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ABSTRACT 

Failure of economic models to anticipate the global financial crisis illustrates the need for modeling to better 
capture complex real-world dynamics. Conventional models—in which economic variables evolve toward equilibria 
or fluctuate about equilibria in response to exogenous random shocks—are ill-equipped to portray complex real-
world dynamics in which economic variables may cycle aperiodically along low-dimensional ‘strange attractors’. We 
present a method developed in the physics literature—‘phase space reconstruction’—that reconstructs strange 
attractors present in real-world dynamical systems using time series data on a single variable. Phase space 
reconstruction provides pictures of real-world dynamics that can guide model specification. 
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1 Introduction 

Economic time series data may conceal complex recurring patterns. For example, system variables may 
cycle aperiodically along low-dimensional ‘strange attractors’. Strange attractors are difficult to detect 
directly from time series data—which may appear mathematically random. Consider, for example, the 
time series data shown in Figures 1(a)-(c). The data in Figures 1(a) and (b) are generated by deterministic 
dynamic models. In particular, Figure 1 (a) plots one of the three variables from the Ikeda dynamical 
system, and system 1(b) plots one of the three variables from the Henon dynamical system. Alternatively, 
the time series in Figure 1(c) is generated as white noise. The data from the Ikeda and Henon dynamical 
systems are not easily distinguished from the white noise—their underlying deterministic structures are 
concealed.     

‘Phase space reconstruction’ is a method for uncloaking deterministic structure in time series data. 
Specifically, it reconstructs attractors present in real-world dynamical systems using time series data on a 
single variable (Broomhead, King, 1985; Schaffer, Kott, 1985; Kott et al, 1988; Williams, 1997). The 
underlying intuition is that the dynamics of the entire system are embedded in the history of each 
variable. The second panels in Figures 1(a) and (b) show the strange attractors reconstructed for the Ikeda 
and Henon systems using this method. The value of phase space reconstruction is to provide pictures of 
the systematic patterns occurring in real-world dynamic systems that can be used to guide model 
specification. 

We begin by introducing the concept of phase space attractors within the context of a dynamic ISLM 
model. We next demonstrate how phase space reconstruction faithfully reproduces one of the model’s 
attractors. Finally, we discuss how phase space reconstruction fits into a more general ‘diagnostic’ 
modeling approach that relies on historical data to guide the deterministic formulation of theoretical 
dynamical models. As an example of diagnostic modeling, we examine how the dynamic ISLM model can 
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be adapted to generate behavior approximating an aperiodic attractor reconstructed from time series 
data on real-world interest rates.  
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Figure 1.  

Time series data and reconstructed attractors: (a) Ikeda Map, (b) Henon Map, (c) White noise 
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2 A phase space attractor  

Consider the following dynamic ISLM model (Shone, 2002, chapter 10): 

( )1 0

excess demand in money market

, ;ddr
m r y m

dt
β  = Ω − 

                                             (1a) 

( )2

excess demand in goods market

, ;r y
dy

e y
dt

α  Ω = −


                                              (1b) 

where r is the nominal interest rate, y is real income, ( , )dm r y measures the demand for real money 
balances, 0m is the exogenous real money supply, ( , )e r y measures real expenditures, and underlying 
parameters 1 2 and Ω Ω are constant. The model exhibits a wide range of dynamic behaviors depending 
on how rapidly the money and goods markets adjust to excess demand. One possible behavior is for 
interest rates and incomes to oscillate toward an equilibrium that balances demand and supply in each 
market [Figures 2(a),(b)]. Figure 2(c) shows the solution in phase space obtained by plotting 

( ),and ( )r t y t for each time t, and connecting the points (a ‘scatter’ diagram). System dynamics are 
characterized by a ‘stable-focus’ attractor.  

 

(a)        (b) 
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Figure 2.  

The spiral-node atrractor in the dynamic ISLM model: (a) Time series of interest rates; (b) Time series of incomes; (c) Phase 
diagram solution where (0), (0)r y are values in the initial time period; (d) Attractor reconstruction. We solved the model 

numerically in Excel using an Euler approximation 
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3 Attractor reconstruction 

To demonstrate how attractor reconstruction works, we reconstruct the stable-focus attractor in the ISLM 
model using only one of the system variables, in this case, ( )r t .  

3.1  Time-delay embedding procedure  

The time-delay embedding procedure of attractor reconstruction is firmly rooted in mathematical 
topology theory thanks to Takens’ theorems (1980). In general, suppose that the solution of a real world 
dynamical system asymptotically contracts onto an unobservable attractor contained within a lower-
dimensional submanifold of unknown dimension N. The observed time series, call it x(t), lies on this 
attractor. The time-delay embedding procedure uses x(t) to ‘reconstruct’ the attractor with a ‘scatter’ plot 
of the following lagged coordinate vectors: ( ), ( ), ( 2 ),..., ( ( 1) )x t x t x t x t Mτ τ τ− − − − where τ is the 
length of the lag, and M is the number of lagged coordinate vectors (called the ‘embedding dimension’).  

For example, assume that we observe the time series ( ) (4, 2,7,4,9,6,10,3)Tx t = [T is the transpose]. 
Assume a lag length 2τ =  and an embedding dimension M = 3. This generates the following lagged 
coordinate vectors: 

4

2 7

7 4 9

4 9 6
( ) , ( 2) , ( 4)

9 6 10

6 10 3

10 3

3

x t x t x t= − = − =

 
                                  
 
 

 

We next detect whether an underlying attractor exists with a ‘scatter plot’ of the elements in the first four 
rows of the lagged coordinate vectors. The first point on the attractor is composed of the first elements of 
each vector (4,7,9). Similarly, the second point is (2,4,6); the third point is (7,9,10); and the fourth point is 
(4,6,3). Elements in the remaining rows are lost in the lagging process. The reconstruction for this 
example is shown in Figure 3. 

 

 

 

 

 

 

 

 

Figure 3.  
Phase diagram for lagged coordinate vectors  

( ) (4, 2, 7, 4, 9, 6,10, 3)
T

x t = , ( 2) (7, 4, 9, 6,10, 3)
T

x t − = , ( 4) (9, 6,10, 3)
T

x t − = . 
 

Takens’ theorems give the following sufficient condition for a reconstructed attractor to have the same 
dynamical properties as the unobservable attractor from the real-world system: (2 1)M N≥ + . In 
words, the embedding dimension M has to be at least as large as twice the dimension of the real-world 
solution manifold N plus 1. Three notes are in order: (1) Since this is a sufficient condition, fewer 
embedding dimensions may be necessary; (2) Takens’ theorems do not imply that the reconstructed 
attractor is identical to the real-world attractor—just that it has the same dynamical (topological) 
properties; and (3) Since N is unobservable, the embedding dimension M cannot be directly calculated 
from the sufficient condition. 



Ray Huffaker / Int. J. Food System Dynamics 3 (2010) 184-193 
  

188 

3.2  Selecting lag length (τ ) and embedding dimension (M) 

Selecting the reconstruction parameters τ and M is like focusing a camera—some pairs result in much 
clearer reconstructed attractors than others. A ‘brute force’ approach would simply search over a number 
of combinations until an attractor comes into focus. Fortunately, the literature suggests various diagnostic 
procedures to narrow the search (Williams, 1997, pp. 275-284).  

The lag length τ is conventionally chosen as the first minimum of the ‘mutual information function’—a 
probabilistic measure of the extent to which ( )x t τ+ is related to ( )x t  at a given τ . The rationale behind 
the approach is to introduce the needed statistical independence between successive lagged values. For 
example, the problem with overly short lags is that successive values contain redundant mutual 
information. Consequently, the reconstructed attractor is restricted to rest on a 45 diagonal in the 
embedding space. Alternatively, the problem with overly long lags is that successive lagged values contain 
too little mutual information to reconstruct the attractor. 

The embedding dimension M is conventionally chosen using the ‘false nearest neighbors’ method. This 
method measures the percentage of close neighboring points in a given dimension that remain so in the 
next highest dimension. The minimum embedding dimension capable of containing the reconstructed 
attractor is that for which the percentage of false nearest neighbors drops to zero for a given tolerance 
level. For example, assume that an overcoat is crammed into small box. If you gaze into the top of the 
box, you see the material, but can’t tell if it’s part of a coat or just a lump of cloth. Take the coat out of 
the box, unfurl it into its proper ‘dimension’, and you see plainly that it’s a coat. When the coat is wadded 
up, the end of the sleeve might be touching the collar. When the coat is unfurled, the end of the sleeve is 
distant from the collar. Thus, when the coat is wadded up, the end of the sleeve and the collar are false 
nearest neighbors. When the coat is completely unfurled, these two points (and all other points on the 
coat) no longer move away from each other—the percentage of false nearest neighbors is zero. Similarly, 
an attractor embedded into too few dimensions does not have room to fully express itself. Alternatively, 
an attractor embedded into too many dimensions goes out of focus.  

Software is available to compute lag length and embedding dimension. For example, Visual Recurrence 
Analysis (VRA) software is free for downloading, use, copying, and distribution at http://visual-recurrence-
analysis.software.informer.com/ . We use it below to compute lag length and embedding dimension.  

3.3 What constitutes a ‘good’ reconstruction? 

The test of a ‘good’ reconstruction is largely visual. Does the reconstructed attractor exhibit apparent 
structure? Recent research in recurrence quantification analysis is adding objective numerical measures to 
identify recurring patterns in data (see, e.g., Webber, Zbilut, 2004).  Moreover, inferential statistics can be 
developed to test whether a reconstruction from a given time series is significantly different from a 
reconstruction from a randomized (surrogate) data set artificially constructed to mimic the same 
statistical properties as the given time series (i.e., probability distribution, power spectrum, and 
correlation function) (Sprott, 2003, pp. 232-235).  

3.4 Reconstructing the ISLM stable-focus attractor 

The stable-focus attractor reconstructed from the single time series ( )r t  generated in the dynamic ISLM 
model is shown in Figure 2(d). The first minimum of the mutual information function occurs at lag length 

3τ =  [Figure 4(a)]. The embedding dimension for which the percentage of false nearest neighbors drops 
effectively to zero is M = 2 [Figure 4(b)]. The attractor reconstructed with these parameters (Figure 2d) 
faithfully reproduces the stable-spiral attractor from the original system (Figure 2c).  
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Figure 4.  
Phase Space Reconstruction Parameters: (a) Mutual information function; (b) False nearest neighbors test 

3.5 Problems in application: Small and noisy data sets 

 

Attractor reconstruction may fail for a couple of reasons (Williams, 1997, pp. 274-275). First, the real 
world dynamical system may not evolve toward a low-dimensional attractor that can be visualized in two 
or three dimensions. In other words, there is no low-dimensional attractor to reconstruct, and the false 
nearest neighbors test gives a minimum embedding dimension greater than what can be visualized (i.e., > 
3 dimensions). Second, attractor reconstruction has difficulty with small and noisy data sets—common 
characteristics of economic time series. Principal components analysis may remedy both problems 
(Williams, 1997, pp. 284-287). 

Principal components analysis filters noise from data without distorting the underlying dynamical 
properties. As a result, the attractor may become more clearly focused in fewer embedding dimensions. A 
brief outline of the procedural steps follows (Theil, 1971): 

1. Construct the ‘embedded date’ matrix X from the observed time series ( )x t  with n 
observations. Set lag length to 1τ =  and embedding dimension to the level M computed from the 
false nearest neighbors test:  

  

[ ( 1)]
matrix in rectangle

n M M
X

τ− − ×
=

( ) ( 1) ( 2) ( 3) ( 1)

( 1) ( 2) ( 3) ( 4) ( )

( 2) ( 3) ( 4) ( 5) ( 1)

( 1)

( 1)

( 1)

( 1)

( 1)

x t x t x t x t x t M

x t x t x t x t x t M

x t x t x t x t x t M

x t n

x t n

x t n

x t n

x t n

− − − • • − + 
 − − − − • • − 
 − − − − • • − −
 • • • • • • •
 • • • • • • •


• • • • • • − +
 • • • • • •


• • • • •
 • • • − +
 • • − +
 • − +
 − + 














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2. Compute the eigensystem of 'X X :  ( )' 0i iX X I aλ− =  where ( 1, )i i Mλ = are eigenvalues 
and ia are the associated eigenvectors.  

3. Compute the principal components: 
1

1
1,i i

M i

p Xa i M
λ×

= =  

4. Compute the proportion of the variance of the embedded data accounted for by each principal  

component: 
( ' )

iV
Trace X X

λ
= . 

5. Reconstruct phase space with a scatter plot of the principal components matrix: 
( )1 2 3, ,P p p p= where 1 2 3, ,p p p  are the principal components associated with the three largest 

eigenvalues and corresponding eigenvectors. 

This procedure filters noise by using the principal components explaining the greatest proportion of the 
variance in the embedded data (the principal components associated with smaller eigenvalues contain 
more noise). The procedure is better justified as the proportion V associated with the three largest 
eigenvalues approaches 100%. Reducing the noise in the data increases the possibility that a 
reconstructed attractor can be visualized in two or three dimensions with a scatter plot of the principal 
components associated with the two or three largest eigenvalues 

4 Diagnostic modeling using real-world interest rate data 

Diagnostic modeling is a two-pronged procedure for guiding and testing the specification of dynamic 
models (Figure 5). The left-ward prong relies on reconstruction of a real-world attractor from historic data 
on a single observed variable. The right-ward prong formulates a dynamic model that attempts to explain 
the dynamic forces characterizing the reconstructed attractor. A useful specification test for the model’s 
attractor is whether it is visually similar to the real-world attractor reconstructed from the historic data.  

We now consider an example of diagnostic modeling. Figure 6 (upper left corner) shows a plot of time 
series data on U.S. interest rates (Moody’s Seasoned AAA Corporate Bond Yields, January 1, 1919 to 
January 5, 2010, Board of Governors of the Federal Reserve System). Directly below is the graph of the 
attractor reconstructed from these data using the time-delay method and principle components. The 
attractor exhibits aperiodic cycling that is more complex than the stable-focus attractor (and other 
possible attractors) generated by the specification of the dynamic ISLM model in equations 1(a),(b). This 
indicates that the model should be re-specified so that it can generate an aperiodic attractor. For 
purposes of this example, we re-specified the model by making the marginal propensity to consume in the 
real expenditure function seasonally forced, i.e., an explicit function of time: ( , , )e r y t  (upper right 
corner of Figure 6). Specifically, we modeled the controlling parameter as a periodic cosine function.  
Similar to the historic data, the attractor generated by the re-specified model exhibits aperiodic cycling 
(lower right corner of Figure 6). 
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Figure 5.  
Diagnostic Modeling 
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Figure 6. 

Example of diagnostic modeling with the dynamic IS-LM model: To simulate the aperiodic cycling of the attractor reconstructed 
fromthe interest rate data (Moody’s seasoned AAA Corporate Bond Yield), the marginal propensity to consumer in the dynamic IS-

LM model was assumed to adjust seasonally 

5. Concluding comments 

Phase space reconstruction, along with emerging methods in recurrence quantification analysis, is a 
potentially useful method for detecting dynamic structure in apparently random historical data. As a part 
of diagnostic modeling, it can improve the formulation and performance of dynamical models.  

 

[ ]

0( , )

( , , )

Dynamic ISLM Model

ddr
m r y m

dt

dy
e r y t y

dt

β

α

 = − 

= −
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