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ABSTRACT 

We investigated the economic dynamics of the German hog-price cycle with an innovative ‘diagnostic’ modeling 

approach.  Hog-price cycles are conventionally modeled stochastically—most recently as randomly-shifting 

sinusoidal oscillations. Alternatively, we applied Nonlinear Time Series analysis to empirically reconstruct a 

deterministic, low-dimensional, and nonlinear attractor from observed hog prices.  We next formulated a structural 

(explanatory) model of the pork industry to synthesize the empirical hog-price attractor. Model simulations 

demonstrate that low price-elasticity of demand contributes to aperiodic price cycling – a well know result – and 

further reveal two other important driving factors: investment irreversibility (caused by high specificity of 

technology), and liquidity-driven investment behavior of German farmers. 
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1 Introduction  

A time series plot of weekly German hog prices
*
 exhibits persistent, aperiodic (non-repeating), and 

random-appearing oscillations (Figure 1).  Agricultural economists conventionally theorize that such price 
volatility is due to cyclical adjustments made by stable markets to re-establish equilibrium after 
exogenous random shocks (Belair and Mackey, 1989; Mackey, 1988; Newbery and Stiglitz, 1981).  Early 
work on the German hog-price cycle contended that the adjustments are cyclical due to naïve producer 
behavior characterized by linear cobweb price adjustments (Buchholz, 1982; Ezekiel, 1938; Hanau, 1928; 
Harlow, 1960; Waugh, 1964) and reasoned that cycling could not be a “permanent fixture of the pork 
industry” because countercyclical producer response would eventually eliminate it (Hayes and Schmitz, 
1987, p. 762). Recent work asserts that producers are unable to predict future prices due to stochastic 
influences, and consequently treats the German hog-price cycle as a purely random phenomenon 
modeled as a randomly-shifting sinusoidal oscillation with time varying amplitudes (Parker and 
Shonkwiler, 2014). 

                                                 
*
 This is a weekly record of average producer prices for slaughtered pigs of quality E to P, in € per kg carcass weight, for the 

state of North Rhine-Westphalia, Germany from January 1990 to December 2011 (1144 observations).  Source: Landesamt 

für Natur, Umwelt und Verbraucherschutz NRW.  
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The conventional theory of price volatility is mathematically convenient for simulatin g irregular cycling.  
Stable markets can be modeled with linear equations of motion. The limitation of linear dynamics  — that 
they can at most generate regular periodic cycling (i.e., ‘limit cycles’) (Kantz and Schreiber, 1997) — is 
overcome by adding an random error term that exogenously shifts a periodic cy cle through time to 
simulate aperiodic cycling characterizing observed data. The downside is that economic theory is tethered 
to a stable-market hypothesis relying on random chance to explain price volatility as a transitory 
phenomenon.  This falls woefully short of explaining real-world market dynamics if price volatility is 
instead persistent behavior due to systematic endogenous market instability.   

Breakthroughs in nonlinear dynamics demonstrate that irregular and complex dynamic behavior can 
emerge from simple deterministic nonlinear interactions of system variables (Kantz and Schreiber, 1997; 
Kaplan and Glass, 1995).  Agricultural economists have recognized the implication that nonlinear market 
models may be able to generate price volatility endogenously (Chavas and Holt, 1991, 1993; Holt and 
Craig, 2006; Holzer and Precht, 1993; Huffaker, 2010; McCullough et al., 2012; Streips, 1995) . On the 
modeling side, Chavas and Holt (1993) demonstrated that a nonlinear market model of the US dairy 
industry could produce aperiodic price dynamics endogenously given highly-inelastic demand. Holt and 
Craig (2006) employed regime switching models to provide evidence of nonlinearity, regime dependent 
behavior, and structural change in the US hog-corn cycle over an almost 100-year study period. On the 
empirical side, several studies have tested observed hog-price data positive for nonlinear dynamics.  
Statistical tests by Chavas and Holt (1991) (using quarterly US data), and Holzer and Precht (1993) (using 
weekly German data), failed to reject the hypothesis of nonlinear price dynamics. Streips (1995) verified 
the results in Chavas and Holt (1991) for monthly data. McCullough et al. (2012) detected nonlinear 
dynamic structure in US livestock cycles. 

We propose an innovative ‘diagnostic’ modeling approach that first empirically d iagnoses real-world 
market dynamics embedded in observed prices, and then applies the diagnosis to inform the specification 
of theoretical models used to simulate and explain these dynamics. A diagnostic approach allows the data 
to ‘speak’ regarding whether a linear-stochastic or nonlinear-dynamic market model is most warranted in 
particular circumstances.  Pre-modeling data diagnostics are useful because neither specification is a 
theoretical imperative a priori.  Neither specification can be logically verified as ‘the’ accurate 
representation of reality because the truth of propositions can be ascertained only in closed systems, 
whereas a model represents an open real-world system in constant flux (Oreskes et al., 1994; Rykiel, 
1996).  Nor can either specification be logically verified by demonstrating a good fit between model 
output and observed data because very different models can be parameterized to provide a good fit 
(Hornberger and Spear, 1981).  Oreskes et al. (1994) conclude that “…modelers should demonstrate the 
degree of correspondence between the model and the material world it seeks to represent...” (p. 644). 
Diagnostic modeling is a means of demonstrating correspondence. 

We conduct data diagnostics with Nonlinear Time Series Analysis (NLTS) (Kantz and Schreiber, 1997; 
Schreiber, 1999) — an emerging empirical arm of nonlinear dynamics.  NLTS comprises a battery of 

 
Source: Landesamt für Natur, Umwelt und Verbraucherschutz NRW 

Figure 1.  Time series plot of hog prices and estimated trend 
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procedures to diagnose nonlinear system dynamics from a single observed time series.  This is possible 
because any single variable records interactions with other system variables.  As Farmer (1987) explained:  
"…the evolution of [a variable] must be influenced by whatever other variables it’s interacting with. Their 
values must somehow be contained in the history of that thing.  Somehow their mark must be there.” 
(Gleick, 1987, p. 266).  Famous naturalist John Muir intuited this result in the early nineteenth century 
observing: “When we try to pick something up by itself, we find it hitched to everything else in the 
universe” (Muir, 1911).  

Failure to diagnose nonlinear-dynamic structure embedded in an observed price series provides evidence 
for adequacy of a linear-stochastic market model.  Alternatively, a price series diagnosed positive for 
embedded nonlinear-dynamic structure provides evidence that observed volatility may be explained with 
a nonlinear market model.  We can experiment with simple nonlinear-feedback structures (Larsen et al., 
2014), and reasonably expect to find parsimonious specifications generating market dynamics 
corresponding to real-world complexity.  These models can be used to explore factors that may be 
responsible for empirically-diagnosed market dynamics. 

We apply diagnostic modeling to detect nonlinear market dynamics embedded in German hog prices , and 
to formulate a nonlinear market model simulating and explaining these dynamics.   

2 The German hog-price cycle 

The graph of German hog prices (Figure 1) shows that the average weekly price level decreases during the 
first decade and increases slightly thereafter. This trend is mainly caused by the change of the Common 
Agricultural Policy (CAP) of the European Union, starting with the McSharry reform in 1992. The CAP 
reform liberalized commodity markets by reducing the price support (i.e. intervention prices).  Thi s led to 
a strong decrease of grain prices during the nineties and the early years of the new century. 
Consequently, hog prices followed declining feed prices leaving the farmers’ margins largely unchanged. 
The increase in average hog price in the latter part of the record is observed for most agricultural 
commodities.   

Past studies of the US hog cycle normally rely on the hog to corn price ratio (Holt and Craig, 2006). This 
implies that the decision makers value the slaughter pigs in quantities of corn. This might have been a 
valid assumption in the past, but it is highly questionable for the present circumstances, at least under 
European conditions. With today’s commonly used technology, significantly more than half of the total 
cost are fixed cost associated with the provision of the durable assets. For the past two decades, we found 
hardly any hog-to-feed price ratio for which the preferable choice would have been  to leave capacities 
idle. Thus, short term production decisions are primarily driven by past investments, and are largely 
independent from current feed prices. Furthermore, farmers as well as feed suppliers can choose between 
different components. Consequently, the volatility of feeding cost will always be less than the volatility of 
a single feedstuff. Finally, changes of feedstuff prices will be encoded in the hog prices as far as there is a 
causality. Our empirical results to follow provide evidence for  such causality.   

For these reasons, we contend that representing the hog cycle by a hog-to-feed price ratio biases the 
analysis by mixing two phenomena with totally different origins: the hog price cycle on one hand and the 
volatility of barley prices on the other.

†
  Increased barley price volatility is a recent phenomenon due to 

CAP reforms, whereas the hog cycle has existed for a long time caused by factors requiring further 
analysis. We focus our analysis on slaughter hog prices. Given nonlinear dynamic industry structure, 
slaughter-hog-price dynamics encode patterns of feedstuff prices. 

                                                 
†
 For example, Parker and Shonkwiler (2013) conclude that – contrary to the USA – the hog cycle in Germany is becoming 

more volatile. This however contradicts the pattern of slaughter pig prices that exhibits a slightly decreasing volatility in the 
most recent years (Figure 1). 
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3 Diagnostic modeling approach 

We propose the diagnostic modeling approach depicted in Figure 2.  Initially, NLTS is applied to 
empirically diagnose whether nonlinear system dynamics are embedded in an observed time series 
(leftward column).  Subsequently, diagnosed nonlinear dynamics—along with knowledge about the 
industry structure and important characteristics of the technology—are applied to develop an explanatory 
model whose simulated dynamics can be validated for correspondence to empirically -diagnosed dynamics 
(rightward column).   

 
3.1 Singular Spectrum Analysis 

The effectiveness of any empirical tool is limited by the quality of available data, and economic d ata are 
notoriously short and noisy.  Time series length is important because, similar to other time series 
methods, NLTS requires stationary data.  Stationarity requires that the “duration of the measurement is 
long compared to the time scales of the systems.” (Schreiber, 1999, p. 33)  Time series that are too short 
fail to provide an adequate sampling of important oscillatory patterns occurring at lower frequencies, so 
that these are grouped into linear or nonlinear trends.  Conventional NLTS practice applies signal 
processing methods that detrend data to isolate detected oscillations (Greco et al., 2011).   

Noisy time series data increase the difficulty of diagnosing embedded dynamic structure (Kot, 1988).  
Some noise may be due to observation or measurement errors most effectively treated as white noise 
that can be eliminated with linear filters.  However, substantial variability in observed data —commonly 
attributed to random noise—may instead be due to complex deterministic dynamics resulting from 
nonlinear feedback interactions among system components.   

Singular Spectrum Analysis (SSA) is a data-adaptive signal processing approach used to prepare data for 
NLTS by detrending data and separating signal (S) from noise (N) without losing dynamic structure (Elsner 
and Tsonsis, 2010; Ghil et al., 2002; Golyandina et al., 2001; Vautard, 1999) .  Initially, SSA embeds the 
price series, P(t), into a ‘trajectory matrix’, X, whose columns are 1K N L   single-period lagged 
vectors of P(t), N is record length, and L is ‘window length’ restricted by 2 / 2L N  .  Window length is 
the only parameter that must be set to run SSA,  and is conventionally selected proportional to the 
dominant spectral peak in the Fourier spectrum (Hassani, 2007).     

 
Figure 2.  Diagnostic modeling approach 
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A ‘singular value decomposition’ decomposes trajectory matrix X into the sum of ‘empirical orthogonal 
functions’  

(EOF),
1

r

ii
X EOF


 , 

 where 
T

i i i iEOF EV PC ,  r = rank X, and eigenvalues i ,  eigenvectors  iEV , and principal 

components  iPC  are drawn from the eigensystem of the covariance matrix, 
TXX .  The sum of all 

eigenvalues measures the total variance in the time series (Ghil et al., 2002), and each eigenvalue measures the 
partial variance explained by their respective EOFs. 
 
Next, the EOFs are arranged in rank order according to magnitude of their respective singular values, 

 i , and then grouped to form the basis for trend, oscillatory, and unstructured-noise components.  

The initial EOF typically forms the basis for the trend component.  Subsequent consecutive EOF pairs—
whose eigenvectors oscillate with identical frequency in phase quadrature—are grouped to form the basis 
of oscillations.  The trend and oscillatory components comprise the signal (S), and remaining EOF’s 
constitute unstructured noise (N).  The detrended signal omits the trend component, and thus includes 
only oscillatory components. An informative measure of signal strength is the sum of the eigenvalues 
associated with the trend and oscillatory components. 

In the final step, ‘diagonal averaging’ of grouped EOF matrices converts them to vector time series of 
corresponding trend, oscillatory, and noise components (Golyandina et al., 2001).   

3.2 Phase Space Reconstruction 

NLTS applies Phase Space Reconstruction (Kantz and Schreiber, 1997; Schreiber, 1999) to determine 
whether nonlinear market dynamics can be reconstructed from a strong price signal, i.e., one that 
explains a substantial portion of total variability in observed prices.   

Dynamic systems are composed of interrelated variables, and each point in phase space records the level 
of these variables in a given time period (the ‘state’ of the system).  A unique trajec tory passing through 
each point in phase space shows how system variables co-evolve.  In low-dimensional nonlinear dynamic 
systems, system variables co-evolve from given initial conditions toward an ‘attractor’—a geometric 
structure with  “noticeable regularity” (Brown, 1996, p. 55).  Examples include stable fixed points, stable 
limit cycles, and strange attractors upon which solution trajectories oscillate irregularly (Glendinning, 
1994; Strogatz, 1994).  Key topological properties of attractors include the ‘correlation dimension’ and the 
‘Lyapunov exponent’ (Kaplan and Glass, 1995; Schreiber, 1999).  The correlation dimension measures the 
attractor’s geometric dimension, and thus indicates the minimum number of variables required to model 
real-world phase space.  The Lyapunov exponent measures the average rate at which initially close points 
on the attractor exponentially diverge or converge, and thus indicates sensitivity to initial conditions.

 ‡
 

Strange attractors are characterized by low-dimensional fractal correlation dimensions and positive 
Lyapunov exponents. 

We illustrate the concept of phase space with a simple linear market model in which producers myopically 
expect the price observed in the previous period: 

                                                 
‡
 R-package ‘tseriesChaos’ was used for computing the correlation dimension, and Lyapunov exponent. 
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               Demand:  ( 0)d

t tq a bp b    

                    Supply:  1 ( 0)s

t tq c dp d    

Price dynamics:  1t t

a c d
p p

b b



   

Imposing a market equilibrium in which price equates demand with supply results in the price dynamics 
equation.  Setting a = 20, b = 4.5, c = 2, d = 3.9, and initial price 0 4p  generates the market-clearing 
price series in Figure 3a.  Prices solving the price dynamics equation clearly evolve along a dampened 
cycle from initial level 0p toward equilibrium level 

eqp .  Phase space for this univariate price model re-
plots the solution in 1,t tp p   space, which highlights the transition of price from one period to the next 
(Figure 3b).  Prices evolve cyclically toward a fixed-point attractor 

eqp  characteristic of the familiar stable 
cobweb dynamic.   

In this simple example, we were able to solve for the market dynamic depicted in Figure 3b because we 
knew model equations.  In reality, we don’t know ‘the’ equations for real-world systems generating 
observed data—otherwise there would be no need for abstract models. Fortunately, Takens (1980) 
proved that a ‘shadow’ version of an attractor can be reconstructed from a single system variable without 
knowing system equations.  This powerful result provides a sound mathematical foundation for Phase 
Space Reconstruction (Kot, 1988; Schreiber, 1999).  Moreover, in this simple example, the price dynamic is 
obvious in price series—extensive time series analysis is not needed.  The utility of Phase Space 
Reconstruction is to diagnose dynamic structure concealed in irregular and random-appearing data. 

The 'time-delay' embedding method of Phase Space Reconstruction (Takens, 1980) represents the 
multidimensionality of real-world market systems by segmenting the detrended and filtered observed 

price series, ( )fP t , into a sequence of delay coordinate vectors:  

( ), ( 2 ),..., ( ( 1) )f f fP t d P t d P t m d    , 

 where d is the ‘embedding delay’ and m is the ‘embedding dimension’ (i.e., the number of delayed 
coordinate vectors).  The embedding delay  is conventionally selected as the delay for which the mutual 
information function reaches its first minimum (Williams, 1997).  The embedding dimension is 
conventionally selected with the ‘false nearest neighbors’ test.  The selected dimension is that for which 
the percentage of ‘false nearest neighbors’ falls below a prescribed tolerance (Williams, 1997). 

§
   

                                                 
§
 R-package ‘tseriesChaos’ was used for computing embedding delay and the embedding dimension. 

 

 
Figure 3.  Linear cobweb price adjustment dynamics 
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If 2 1m n  , the reconstructed shadow attractor is guaranteed to share key topological prop erties with 

a reconstruction in any coordinate system, where n is the dimension of the real-world attractor (Takens, 

1980).  Since n is unobserved in practice, m n  is generally considered adequate to reconstruct true 

system dynamics (Small and Tse, 2002).  The scatterplot of the delay coordinate vectors depicts a 
trajectory in reconstructed shadow phase space representing a sampling or ‘skeleton’ of the real -world 
attractor (Ghil et al., 2002; Vautard, 1999).   

.3 Surrogate Data Analysis  

Surrogate Data Analysis is conventionally done to test whether apparent structure detected in an 
empirically reconstructed shadow attractor is more likely the figment of a mimicking stochastic process. A 
shadow attractor’s topological properties are compared statistically with those taken from phase space 
reconstructed from randomized surrogate vectors (Small and Tse, 2002, 2003; Theiler et al., 1992).   

Surrogate vectors are designed to destroy intertemporal patterns in the SSA -filtered record while 
preserving various statistical properties.  Two conventional types of surrogate vectors are: AAFT 
(amplitude-adjusted Fourier transform) surrogates and PPS (pseudo phase space) surrogates. AAFT 
surrogates are generated as static monotonic nonlinear transformations of linearly filtered noise. They 
preserve both the probability distribution and power spectrum of the SSA-filtered data (Theiler et al., 
1992). PPS surrogates test for the presence of a noisy limit cycle by preserving periodic trends in th e SSA-
filtered data while destroying chaotic structures (Small and Tse, 2003).

**
   

Surrogate data testing proceeds by measuring topological properties associated with the phase space 
reconstructed from each surrogate vector. The mean from the distribution of each measure for the set of 
surrogate vectors is tested for significant difference from the corresponding empirical measure. 
Statistically insignificant differences indicate that detected empirical structure is more likely attributed to 
stochastic behavior.  

We formulated a two-tailed test rejecting the null hypothesis of insignificant difference when mean 
surrogate topological properties are significantly above or below their empirical counterparts. Rejection 
occurs for the set of critical significance levels c  satisfying:  

 2 1c t    

where the right-hand side of the inequality is the p-value for a two-tailed test (Minitab), t  is the CDF 
for the t-statistic with N-1 degrees of freedom, and  is absolute value.  Rejection of the null hypothesis 
indicates that the structure detected in the shadow attractor is not due to mimicking random behavior.  

3.3 Diagnostic Modeling 

NLTS-diagnosed dynamics can guide the specification of mechanistic models explaining real -world 
behavior, and also provide a specification test for how well simulated phase space corresponds to 
empirically-reconstructed phase space.  An informative test for model specification is whether an 
empirically-reconstructed shadow attractor is similar to a simulated model attractor (Huffaker, 2010; 
Huffaker et al., 2003; Kot, 1988).  In one application, Kot et al. (1988) reconstructed shadow attractors 
from observed time series on Copenhagen measles and chickenpox epidemics .  Simulated attractors using 
the popular SEIR epidemiological model did not match shadow attractors until the SEIR model was 
modified to seasonally force the 'infection' parameter. Kot et al. (1988) concluded: 

   “The agreement between the attractors of the models and those of the data are rather 

striking and suggest that simple deterministic models can capture the behavior…of at least 
some complex biological systems”  (p. 92). 
 

In another application, Huffaker et al. (2003) applied a generalized-logistic specification of student, faculty 
and administrator interactions in a university ‘ecosystem’ to simulate an attractor matching a stable-focus 
shadow attractor reconstructed from historic populations.    

                                                 
**

 We follow methods outlined in Kaplan and Glass (1995) and Small and Tse (2002) to write R-code generating AAFT and 
PPS surrogate vectors, respectively.   
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4 NLTS diagnostics of German hog-prices 

We applied the NLTS framework (Figure 2) to diagnose possible low-dimensional nonlinear dynamic 
structure embedded in the German hog-price record.  

Fourier Spectrum Analysis identifies dominant peak frequencies at 0.004 Hz (a 260-week or 5-year 
oscillation period) and 0.019 Hz (a 52-week or annual oscillation period) (Figure 4a).

 
 Continuous Wavelet 

Analysis verifies stationary power at the low frequency 5-year oscillation as required by subsequent 
analysis (Figure 4b).

††
   

 

 

Accordingly, the window length for SSA S/N separation was set at L = 520, which allows for 10 repetitions 
of the annual (52 month) oscillation period.  The eigenvectors associated with EOF pairs 2,3 and 6,7 
exhibit the 5-year and annual oscillations detected by the Fourier spectrum, respectively (Figure 5a,b).  
The isolated trend component

‡‡
  and the composite SSA-reconstruction filtered of the unstructured-

residual component are graphed against the observed hog-price record in Figure 5c.  Compelling evidence 
for the strength of the signal in the SSA-reconstruction is that it accounts for 99% of the variation in the 
observed hog-price record.   

We reconstructed a low-dimensional nonlinear shadow attractor from the detrended signal separated 
from the German hog-price record (Figure 6).  The attractor has an embedding delay d = 20 weeks and an 
embedding dimension m = 3.  It is a ‘torus-type’ attractor composed of nonrepeating 5-year and annual 
oscillations.  The top view of the shadow hog-price attractor is shown in Figure 6b.  The sampled 
trajectory makes four full 5-year revolutions around the attractor depicted in Figs. 6c-f.  The attractor has 
a computed correlation dimension of 3.0, which indicates that a minimum of three variables are required 
to model the shadow hog-price attractor (Table 1).  The computed Lyapunov exponent is 0.02, which 
indicates sensitivity to initial conditions (Table 1).  Both measures are consistent with the existence of a 
strange German hog-price attractor. 

We tested the reconstructed shadow attractor against 100 PPS surrogate price vectors generated from 
the German hog-price series. Surrogate data tests soundly reject the null hypothesis that the 
nonrepeating cycling characterizing the shadow attractor is randomly generated with computed p-values 
effectively zero (Table 1).  

                                                 
††

 AutoSignal 1.7 (© SeaSolve Software Inc., 1999-2003) was used for Fourier spectral analysis and Continuous Wavelet 
Analysis. 
‡‡

 During the period under consideration, there were no abrupt technological or structural changes that would have caused 
structural breaks. Thus, the detrended price series can be viewed as being generated under a relatively constant economic 
environment. 

 
Figure 4.  Spectral analysis 
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Table 1. 
Results of Surrogate Data Tests 

 Empirical 
Attractor 

Surrogate 
Mean 

Surrogate 
St Deviation 

p-value 

Correlation Dimension 3.06 3.37 0.22 0.00 
Lyapunov Exponent 0.028 1.32 0.20 0.00 

 

 

 

 
Figure 5.  Singular Spectrum Analysis 
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5 A nonlinear dynamic model of the German hog industry 

The information revealed by nonlinear time series analysis guides our modeling of the German hog 
industry. The empirical hog-price attractor has an embedding dimension of m = 3, indicating that at least 
three state variables are required to generate empirically-detected system dynamics. The computed 
Lyapunov exponent supports the hypothesis of divergent, possibly chaotic behavior. If the system is 
represented in continuous

§§
 time, at least three differential equations are necessary to generate chaotic 

behavior. The empirical attractor is composed of two major cycles. The 5-year cycle could represent an 
investment pattern, and the annual cycle the short term adjustment of production. Both are linked to the 
price of slaughter hogs.  

We emphasize that our nonlinear hog market model does not require the random supply and demand 
shifters conventionally used to create volatility exogenously in linear market formulations.  Rather, we 
employ nonlinear feedbacks among system variables to generate systematic volatility endoge nously, after 
having applied signal processing to purge observed hog prices of volatility due to white noise.     
Moreover, we employ the smallest set of state variables required to reconstruct empirically -detected 
nonlinear market dynamics, and thus do not attempt to formulate a detailed simulation model. 

We propose the following fifth order system of differential equations:  

                                                 
§§

 The system will be modeled in continuous time since all actors are assumed to make their decisions independently at 
arbitrary points in time. This leads to a continuous time representation of the aggregated flows incorporated in the model. 
Contrary, a discrete time model would imply that all actions are synchronized as to take place at the discrete time steps of 
the model which, in our case, would be an unrealistic assumption. 

 
Figure 6.  Anatomy of shadow hog-price attractor 
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The system is composed of three dynamic processes: price adjustment, adjustment of the quantity of 
supply resulting from production decisions, and adjustment of the production capacities through 
investments. There are three state variables: production capacities (C), actual production or supply (S), 
and hog prices (P); along with time lags constituting additional (intermediate) states. The first equation 
describes the price adjustment process in which price change  depends on demand (D), supply (S) and 
the current price (P). The notation  indicates a third order differential equation that determines supply 
adjustment. This equation, to be specified later, models the production decisions based on the marginal 
cost function, and likewise considers the delay caused by the time period necessary to complete the 
production process. Production decisions in the short run are constrained by available production 
capacities; in the long run these may be expanded through investments. This process is modeled by the 
third equation, where the rate of change of production capacities  depends on product price (P) and 
current resources (C). Given the third order plus two first order differential equations, the above 
equations comprise a fifth order system. 

Operationalizing the model requires specification of the above equations. We begin with the price 
adjustment. Assuming a trial and error process, the rate of price change can be viewed as dependent on 
the difference between demand and supply, i.e. (D – S). This implies that the actors on the market have 
crude information on actual prices and trade volumes.  This information is available for the German hog 
market from weekly magazines and the internet. The simplest functional form is a linear relationship, i.e. 

  0 a,SDaP . Assuming that large surpluses of either demand or supply speed up the 
adjustment process, a more adequate formulation is: 

  03  a,SDaP  

Alternatively, we may postulate that the relative rate of price change equals the right hand side 
expression of the above formula: 

 

  0

or

3

3





a,PSDaP

SDa
P

P





 

This constitutes an additional feedback loop in the model. We use equation (3) in the model.  

Figure 7 depicts the dependence of the marginal price change P on the difference between demand and 
supply (D – S) and the price level P respectively, according to equation (3). 

Demand (D) is modeled with an isoelastic demand function: 

0,   cPbD c
 

where c represents the price elasticity of demand and b is a scale factor.  

The process of supply adjustment is represented by the third order differential equation  in (1).  It can be 
separated into two components representing (a) the production decisions and (b) the time lag that occurs 
between the decision to start a production process and its completion. The production decision is based 
on the marginal cost function of the average production unit and the number of production units 
currently in service: 

0,,  dgPgCS d
p  

(1) (1) 

(2) 

(3) 

(4) 

(5) 
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The process of supply adjustment is represented by the third order differential equation  in (1).  It can be 
separated into two components representing (a) the production decisions and (b) the time lag that occurs 
between the decision to start a production process and its completion. The production decision is based 
on the marginal cost function of the average production unit and the number of production units 
currently in service: 

0,,  dgPgCS d
p  

Sp represents “planned” supply according to the actual decisions, and g P
 d

 represents the marginal cost 
function. An exponent d < 1 indicates economies of scale while d > 1 marks diseconomies of scale. If d = 1 
no scale effects occur. 

The production time lag is modeled via an exponentially distributed delay which is generally defined by 
the system of first order differential equations 
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where k marks the order of the delay (in our case k=3), and DEL denotes the average delay time (the 
production period plus the reaction time of the decision makers).  

The adjustment of production capacities follows the differential equation 

01 







 l,v,w,

l

C
C

Pv

C
wC

 

The first term represents investments and the second measures the reduction of production facilities due 
to wear and tear. The parameter l measures the service life of the production facilities. The investment 
term assumes that the adjustment of production capacities follows a logistic growth process for the case 
of constant product price P. The term v P marks the upper limit of this process, and can be interpreted as 
a “target size” of the sector proportional to P. A falling market price P can cause disinvestments if the 
term inside the brackets becomes negative as current capacities C exceed v P. This negates sunk cost 
effects that are important in the German hog sector due to the high sp ecificity of the facilities. To allow 
for irreversibility due to sunk costs, the following formulation was used in the model:  

 
Figure 7. Price change as a function of demand and supply 
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(7) 

(5) 
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where the Max[∙] operator ensures that investments are always positive or zero, and capacities can 
decline only through deterioration.  

Large investments often cause high financial leverage that inhibit investments for a period of financial 
consolidation. This can be factored into equation (8) by introducing a (discrete) time lag:  
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The expression C(t–T) represents production capacities lagged by T time units. This formulation is 
equivalent to the introduction of a maturation delay in logistic population models and may cause a 
periodicity if the time lag is significant. 

Figure 8 summarizes our nonlinear model of the German hog industry. 

 
 

Figure 8. Nonlinear dynamic model of German hog industry 

(8) 

(9) 
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6 Model results 

The model was implemented in © Vensim and solved using a 4
th

 order Runge-Kutta integrator. It was 
simulated over a period of 50 years. Following our empirical results, the base run set the production delay 
DEL to 1 year and the time lag T for financial consolidation after large investments to 5 years. The service 
life of the facilities (l) was assumed to be 15 years on average. No scale effects were considered (i.e. d=1).  
The demand elasticity was set to 0.25.  Other parameters were normalized to generate a hypothetical 
equilibrium price of roughly 1.4 €/kg. 

 

The simulation results are depicted in Figure 9. The price series generated by the base run of the model 
(Figure 9a) exhibits aperiodic cyclical behavior consistent with the observed hog-price record. Figure 9b 
portrays the trajectory of the primary state variables of the model, i.e. price, supply and production, in 
three-dimensional space and thus illustrates the attractor of the system. The graph reveals noticeable 
similarities with the reconstructed attractor depicted in Figure 6.  Reconstructing phase space from the 
simulated price series results in an embedding dimension of m=3 and a time lag of d=20, and thus reveals 
largely the same results as obtained in the reconstruction for the original time series. This indicates that 
our model matches the dynamic behavior diagnosed for the real world system, and therefore provides a 
means to identify important determinants for the persistent hog cycle. 

Since the model is completely deterministic, the revealed market instability is endogenous and the 
aperiodic cycling emerges without external shocks. The dynamic properties of the system are due to the 
inherent nonlinearities along with the built in time lags. The nonlinearities refer primarily to (1) the price 
adjustment process, (2) the irreversibility of investments due to sunk cost and (3) the logistic type 
adjustment of production capacities. Together with the periodicity of investments induced by the financial 
consolidation time lag, these factors result in the dynamic response displayed in the upper part of Figure 
9. 

With appropriate parameter changes, the model can generate quite different types of dynamic behavior 
as seen from the trajectories depicted in the lower part of Figure 9. If the financial consolidation time lag 
is omitted, the simulated attractor is converted into a ‘limit cycle’.  Regardless of the starting point, all 
trajectories converge on one orbit (Figure 9c). This behavior is caused by the combination of low demand 
elasticity and the irreversibility of investments. It holds over a fairly wide range of parameters. Only 
increased price elasticity of demand changes system dynamics to a ‘point’ attractor (Figure  9d).  In the 
absence of external shocks, the system approaches a stable equilibrium. However, this is unrealistic 
because low demand elasticity for food is characteristic for all industrialized countries where only a small 

 
Figure 9. Simulation results 
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portion of income is spent for food. 

7 Conclusions 

We applied a diagnostic modeling approach to investigate causal factors driving the persistent German 
hog-price cycle. Nonlinear time series analysis reconstructed an empirical hog-price attractor governing 
the aperiodic cycling of hog prices over time. Our empirical results indicate that causal factors driving the 
hog-price cycle are endogenous to the industry, and therefore can be investigated informatively by 
formulating a structural industry model.  We drew from empirically diagnosed  industry dynamics, and 
knowledge of industry structure and technology, to formulate a model that successfully simulated the 
dynamic complexity of the real-world hog-price cycle.   

The model provided important insights into the origin of the hog cycle in Germany. Besides the low price 
elasticity of demand, which is a well-known determinant of market cycles, the model revealed two more 
important influence factors. One is the irreversibility of investments caused by the high specificity of the 
technology. Along with low demand elasticity, this leads to permanent fluctuations in form of a limit cycle. 
Another important factor is periodicity of investments induced by a time lag forcing a period of financial 
consolidation after a big investment. This is consistent with the investment behavior of German farmers 
which is often liquidity driven. It also reflects restrictions on the debt ratio imposed by the capital market. 
Adding this factor to the model converted the limit cycle into a torus-like attractor. 

These results have several practical implications. First, valid medium and longer term price forecasts (i.e. 
beyond a few weeks) are precluded by the nature of the attractor. By the same token, policy measures 
aimed at price stabilization (i.e. buffer stock policies) are likely to fail. Accepting that in industrialized 
countries demand elasticity can hardly be influenced, the remaining starting points for altering the system 
behavior are (1) the technology and (2) the investment and financing behavior. First, a mor e flexible 
technology (e.g. multi-purpose instead of highly specialized facilities) involving less sunk cost would 
enable a flexible response to changing market conditions, thus lessening the degree of irreversibility of 
investments. Regarding the second aspect, utilizing alternative ways of financing which focus on equity 
capital (provided by external investors) rather than bank loans, would help smoothing the investment 
cycles. 

The methodology presented in this paper goes beyond conventional time series modeling – including 
state of the art methods of price volatility analysis (e.g. GARCH-approaches) – as it not only aims at 
reconstructing the time pattern of the series, but seeks to identify causal factors driving the system 
dynamics. To this end, a structural model serves as analytical tool, the design and development of which is 
guided by the empirically-diagnosed dynamic properties of the system (i.e. the nature of the attractor) 
along with existing knowledge about the industry. The diagnostic part of the approach is primarily based 
on Phase Space Reconstruction techniques. However, these techniques fail to reveal a clear picture if the 
investigated time series contains notable (colored) noise, as is the case for most economic time series. 
Singular Spectrum Analysis was therefore applied first, and turned out to be a useful method for 
constructing a noise-free series for the further analysis that still incorporates the essential system 
dynamics. 

The presented diagnostic modeling approach is applicable to a wide range of problems focusing on the 
analysis of systems driven by nonlinear dynamics. These systems are often characterized by chaotic 
attractors whose essential properties can be empirically diagnosed as described, and applied to formulate 
theory-based models able to simulate the complexity of real-world dynamics.   
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