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ABSTRACT 

Inventory is an essential factor in the supply chain. Inventory problems are increasingly complex for perishable 

products such as food. This study proposes a Single Vendor-Single Buyer (SVSB) model for food products by 

considering exponential quality degradation. The objective function of this problem is to maximize the Joint Total 

Profit (JTP) of the SVSB system. The frequency of ordering raw materials (m), the frequency of delivery of the finished 

product (n), and the time of the inventory cycle (T) were the three (3) decision variables introduced in t he study.  This 

study proposes the Grey Wolf Optimizer (GWO) algorithm as an optimization tool for SVSB problems. A case study 

was conducted on a food company in Indonesia. Sensitivity analysis on costs, revenue, and JTP was also presented. 

The results showed that raw materials' quality degradation level affected JTP. The results also suggested that the 

GWO algorithm performs better than the Genetic Algorithm (GA) to optimize the SVSB inventory model.  

Keywords: Optimization Inventory; Grey Wolf Optimizer; vendor-buyer; inventory model 
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1 Introduction 

Supply chain performance has become a determining factor for companies to challenge competition 
globally (Ibrahim, Putri, and Utama, 2020). Supply chain management is an integrated approach in managing 
information, finances, and goods from vendors to end customers (Mentzer et al., 2001; Gholami and 
Mirzazadeh, 2018; Utama, Santoso, Hendrawan, and Dania, 2022). One of the critical factors in the supply  
chain is inventory management (Goyal, Deshmukh, and Control, 1997) (Kumar and Kumar, 2017) (Gholami 
and Mirzazadeh, 2018) (Utama, Wardani, Halifah, and Pradikta, 2019). Inventory is an essential asset in a 
company that plays a vital role in the smoothness of production (Maulana et al., 2019; Utama, Widodo, 
Ibrahim, Hidayat, and Dewi, 2020; Widodo and Utama, 2019). Moreover, the inventory problem significantly 
impacts the company's total profit (Utama, Kholik, and Mulya, 2020) (Pando, San-José, and Sicilia, 2020). 
One of the critical problems in the supply chain system is integrating inventory decisions between vendors 
and buyers (Huang, 2004). Although several vendor-buyer supply chain management strategies have been 
proposed, inventory management policies have proven can improve supply chain and company 
performance (Sarmah, Acharya, and Goyal, 2006). The problem of inventory on vendor-buyer has variations 
such as Single Vendor-Single Buyer (SVSB) (Huang, 2004) and Single Vendor-Multi Buyers (SVMB) (Sarkar, 
Majumder, Sarkar, Kim, and Ullah, 2018) (Tarhini, Karam, and Jaber, 2019) (Agustiandi, Aritonang, and 
Rikardo, 2021). In the last decade, there has been increasing interest in the SVSB inventory problem (Giri, 
Dash, and Sarkar, 2020). 

Goyal (1988) was the first researcher that introduces the SVSB Inventory model. Since then, many SVSB 
issues have been investigated. Several studies on the SVSB Inventory model have been proposed to solve 
Inventory problems.  Hill (1999) proposed an economic production quantity model for the SVSB. 
Furthermore, this model was developed to determine the production and shipment policy (Hill and Omar, 
2006). Yao, Evers, and Dresner (2007) constructed a vendor-managed inventory model by considering 
continuous replenishment and just-in-time purchasing. The SVSB model for multi-product multi-constraints 
was proposed by Pasandideh, Niaki, and Nia (2011) and Sadeghi, Sadeghi, and Saidi Mehrabad (2011). Their 
research utilized genetic algorithms for problem optimization. Zanoni and Zavanella (2007) developed a 
model that integrates the transport-inventory system. They proposed a heuristic procedure to solve the 
problem. The SVSB model considering deteriorating and defective items have also been developed by Lee 
and Kim (2014). 

Furthermore, Liu, Li, and Yang (2019) suggested an SVSB model with deteriorating items. They offered a 
heuristic procedure to solve the problem. Sekar and Uthayakumar (2018) developed a model involving 
multiple production setups and rework. A model considering lead times and stochastic demand was 
researched by Mou, Cheng, and Liao (2017). In addition, Vijayashree and Uthayakumar (2017) also offered 
a model with ordering cost reduction dependent on lead time. The model considering learning effect, fuzzy 
demand, and imperfect quality was projected in Fu, Chen, and Sarker (2019). They proposed an algorithm 
heuristic to solve this problem. AlDurgam, Adegbola, and Glock (2017) developed a model with stochastic 
demand and variable production rates. A heuristic solution procedure was offered to solve this problem.  

Previous research from the SVSB model stated that most of the models developed did not consider quality 
degradation. Only a few papers have discussed deteriorating and defective items. Some of these studies 
were investigated by Lee and Kim (2014), Liu et al. (2019), and Fu et al. (2019). Unfortunately, their research 
was not suitable for the problem of food products. Food products have unique characteristics because they 
are included in the perishable product (Lee, Fauza, Amer, and Prasetyo, 2014; Rau, Wu, and Wee, 2004; 
Muhammad Faisal Ibrahim, Mardhiyyah, Rusdiansyah, Boer, and Utama, 2020). This product undergoes 
rapid quality degradation (Gusti Fauza, Amer, Lee, and Prasetyo, 2016; Ouyang, Wu, and Yang, 2006). 
Improper inventory management affects supply chain performance (Blackburn and Scudder, 2009). The 
right decision in vendor-buyer inventory management can increase the company's profit (Gusti Fauza, Amer, 
and Lee, 2013; Fauza, Amer, Lee, and Prasetyo, 2015; Fauza, Prasetyo, and Amanto, 2018). Food products 
have linear and exponential quality degradation characteristics (Wang and Li, 2012; Yang and Tseng, 2015). 
We noted only Gusti Fauza, Prasetyo, Dania, and Amanto (2018) research discussed SVSB for food products. 
Unfortunately, their research assumes that the degradation of raw material quality is linear. In addition, 
the demand for raw materials was assumed to be the same as the demand for finished products. This 
assumption is not realistic in actual conditions. In fact, some food products have exponential quality 
degradation characteristics. Moreover, the demand for finished products is not the same as the demand for 
raw materials. 

Based on previous research, no study SVSB inventory model cons iders exponential quality degradation. 
Therefore, this study develops an SVSB inventory model to maximize joint total profit by considering 
exponential quality degradation. The proposed model is developed from Gusti Fauza et al. (2018) with some 
development. First, we developed a model with exponential quality degradation for raw material. Second 
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is, this research considers the conversion coefficient of the finished product to raw material. Then, a 
sophisticated Grey Wolf Optimizer (GWO) algorithm is offered as an optimization tool. To maximize joint 
total profit, adequate procedures are needed to optimize SVSB problems (Chang, Teng, and Goyal, 2010). 
One of them is a popular meta-heuristic procedure for the optimization of the vendor-buyer inventory 
model problem with a Genetic Algorithm (GA) (G Fauza et al., 2018; Gusti Fauza et al., 2018; Pasandideh et 
al., 2011; Sadeghi et al., 2011). Other meta-heuristic algorithms are also proposed for vendor buyer model 
optimization, such as Particle Swarm Optimization (PSO) (Taleizadeh, Niaki, Shafii, Meibodi, and 
Jabbarzadeh, 2010), and a combination of PSO and GA (Sadeghi, Mousavi, Niaki, and Sadeghi, 2013). 
Although several metaheuristic methods have been proposed, unfortunately, no studies discuss the 
computational time in solving SVSB problems. Therefore, this study also analyzes the computational time 
to solve the SVSB problem. 

The motivations of this research are described as follows: (1) to the best of the author's knowledge, the 
problem of the decision to integrate the SVSB inventory model by considering exponential quality 
degradation for food products has never been investigated. In addition, several previous research models 
assumed that the total demand for raw materials at the vendor level was the same as the demand at the 
buyer level. This study develops an SVSB model with exponential quality degradation of raw materials. The 
proposed model also considers the amount of raw material demand at the vendor level, which is not the 
same as the demand at the buyer level. The second research motivation is that no previous research has 
used GWO to optimize SVSB problems. The GWO algorithm is a sophisticated algorithm inspired by Grey 
Wolf in finding food in nature. It proved effective compared to the GA algorithm (Mirjalili, Mirjalili, and 
Lewis, 2014). This algorithm has been successfully applied to scheduling problems (Utama, 2021; Jiang and 
Zhang, 2018), and feature selection (Al-Tashi, Kadir, Rais, Mirjalili, and Alhussian, 2019), prediction (Wei et 
al., 2017). It is hoped that this research contributes to a deeper understanding of the problem of the  SVSB 
inventory model for food products. The contribution of this research is described as follows: (1) proposing 
an integrated SVSB inventory model by considering quality degradation exponentially for food products, 
and (2) proposing a sophisticated GWO procedure as an optimization tool for SVSB problems. 

The composition of this paper is presented as follows; Section 2 presents the literature review. System 
characteristics, assumptions, notations, and mathematical models are described in Section 3. Section 4 
presents the proposed GWO algorithm to optimize the SVSB inventory model. Section 5 contains data and 
experimental procedures. Optimization of the SVSB model with GWO, sensitivity analysis, and comparison 
of algorithms are presented in section 6. The final section of this paper displays the conclusion and 
suggestions for further research. 

2 Literature Review 

The literature review on the topic of  SVSB is discussed in this section. Some researchers have published 
SVSB research. The SVSB problem was first studied by Banerjee (1986), with lot size as a decision variable. 
In this investigation, the vendor served as a manufacturer. Suresh K Goyal (1988), Goyal and Gupta (1989), 
Hill (1999), and Lu (1995) also studied the same topic. In addition, Hill and Omar (2006) established this 
model to decide the policy of production and shipment. The lead time was taken into account by Ben-Daya 
and Raouf (1994). Ouyang, Yeh, and Wu (1996) established this model, including lost sales and backorders. 
Yao et al. (2007) offered a model that incorporates continuous replenishment and just-in-time purchase. 
The SVSB model for multi-product multi-constrain instances was proposed by Sadeghi et al. (2011) and 
Pasandideh et al. (2011). They employed GA to optimize the problem in their research. Sekar and 
Uthayakumar (2018) presented a concept incorporating rework and setup. In addition, Mou et al. (2017) 
created a model that considered stochastic demand and lead times. A new model w ith stochastic demand 
and variable production rates was created by AlDurgam et al. (2017). Vijayashree and Uthayakumar (2017)  
proposed a model in which ordering costs are reduced in proportion to lead time. Zanoni and Zavanella 
(2007) developed a model that considers the transportation and inventory systems. 

There have also been several studies on the SVSB model with imperfect quality. The SVSB model was 
projected by Lee and Kim (2014) by taking deteriorating and defective items into account. The SVSB model 
proposed by Liu et al. (2019) has a decreasing production and shipment policy item. Fu et al. (2019) also 
proposed a model that considers imperfect quality, fuzzy demand, and the learning effect. Quality 
degradation research is scarce, according to previous studies. Only Gusti Fauza et al. (2018), Liu et al. (2019), 
Fu et al. (2019), and Lee and Kim (2014) discussed deteriorating and defective items. There are only a few 
products on the market that can be described in such a way. Food products degrade linear and exponentially 
(Wang and Li, 2012; Yang and Tseng, 2015). Only Gusti Fauza et al. (2018) discussed the SVSB model for 
food products, and we are unaware of any other studies on the subject. Assumed in their study, the 
degradation of raw material quality is a straight line. Untimely delivery was recently proposed by Çömez-
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Dolgan, Moussawi-Haidar, and Jaber (2021). Herbon (2021) provided a model that takes into account a 
production cycle length that is constrained. 

Table 1 shows the comparison of this study with previous SVSB studies. It demonstrates that the objective 
function of cost minimization dominates the SVSB problem. The objective function of Maximize Profit, on 
the other hand, is still rarely investigated. Furthermore, this study involves a quality degradation in raw 
material and a shelf-life-based price function for finished products at the buyer level. In raw material, 
exponential degradation is considered in this model. The GWO algorithm is proposed as a sophisticated 
procedure to solve this problem. This research also analyzes computation time which has not been 
discussed by previous SVSB research. 

Table 1 
Comparison of studies. 

Author Quality 
degradation/ 
deteriorating 

Type degra-
dation 

Shelf-life 
based price 
function 

Com-pu-
tation 
time 

Objective function Solution 
Procedure 

Minimize 
Total cost 

Maximize 
Profit 

Banerjee (1986) - - - - V - Exact
Suresh K Goyal (1988) - - - - V - Exact
Goyal and Gupta (1989)  - - - - V - Exact
Ben-Daya and Raouf (1994) - - - - V - Heuristic
Lu (1995) - - - - V - Heuristic
Ouyang et al. (1996) - - - - V - Heuristic
Hill (1999)  - - - - V - Heuristic
Hill and Omar (2006) - - - - V - Heuristic
Yao et al. (2007) - - - - V - Heuristic
Pasandideh et al. (2011) - - - - V - GA
Sadeghi et al. (2011) - - - - V - GA
Lee and Kim (2014) V - - - - V Heuristic 
Sekar and Uthayakumar (2018) V - - - V - GA
Mou et al. (2017) - - - - V - Heuristic
AlDurgam et al. (2017) - - - - V - Heuristic
Vijayashree and Uthayakumar (2017) - - - - V - Heuristic
Gusti Fauza et al. (2018) V Linear V - - V GA
Liu et al. (2019) V - - - V - Heuristic
Fu et al. (2019) V - - - V - Heuristic
Çömez-Dolgan et al. (2021) - - - - V - Heuristic
This research V Exponential V V - V GWO

3 System characteristics 

This section describes the characteristics of the SVSB system. The SVSB system is depicted in Figure 1. The 
vendor (manufacturer) orders raw material from the supplier for 𝑚 times to fulfill the demand (𝐷) of the 
buyer during the inventory cycle 𝑇. The raw material needed to meet the demand is 𝜆𝐷. Raw materials at 
the vendor (manufacturer) level experience quality degradation during storage. The vendor processes the 
raw material to become a finished product with a production level of 𝑃. The finished product is sent 𝑛 times 
to fulfill the demand (𝐷) of the buyer. Raw materials in this system are categorized as perishable products 
with an exponential level of quality degradation. The finished product is a food product with an expiration 
date in this study. The finished product is based on three price categories: maximum, medium, and 
minimum. So that as the expiration date approaches, consumer interest in buying from buye rs decreases. 
However, this can be overcome by reducing product prices (Gusti Fauza et al., 2016). 
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Figure 1. Single Vendor-Single Buyer System 
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Figure 2. Inventory profile on a Single Vendor-Single Buyer system 

The inventory profile in the SVSB buyer's system is described in Figure 2. Raw materials and finish goods 
are controlled by the inventory level for the SVSB system. There is a demand for finished products (𝐷) at 
the buyer level to be fulfilled within the horizon. The finished product is shipped 𝑛 times as many batches 
from a vendor to the buyer with a 𝑞𝑝/𝑛 size. Thus, the vendor delivery cycle of the finished product is 𝑞𝑝/𝐷 

or 𝑇/𝑛, which is then denoted as 𝜏𝛥. 𝑞𝑝 is the quantity of the finished product to fulfill demand during the 

production cycle 𝑇 or 𝑞𝑝 = 𝐷𝑇, then 𝑇𝑝 is equal to 𝐷𝑇/𝑃. To fulfill the demand for 𝐷 buyer products, the 

vendor performs production at a production rate of 𝑃. The raw material needed to meet the production 
rate is 𝜆𝑃 during the production time of 𝑇𝑝. The conversion value of raw materials to finished products is 𝜆. 

Furthermore, vendors (manufacturers) procure raw materials from suppliers with lot size 𝑞𝑟  where the 
procurement cycle is 𝑇𝑝/𝑚Tp. Assumptions, notations, and mathematical models in appendix A.  
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4 Proposed GWO Algorithm 

This section describes a proposed procedure for solving the SVSB inventory model problem. The algorithm 
proposed to solve this problem is the Grey Wolf Optimizer (GWO) Algorithm. The GWO a lgorithm is a new 
advanced algorithm inspired by the hunting behavior of the grey wolf. This algorithm was proposed by 
Mirjalili et al (Mirjalili et al., 2014). The grey wolf has a unique behavior when hunting its prey. In the hunting 
group, the grey wolf divides itself into four types of roles, namely alpha (𝛼), beta (𝛽), delta (𝛿), and omega 
(𝜔). The 𝛼 wolf is the lead wolf, where 𝛼 is a wolf who can be the decision-maker in the group. The beta 𝛽 
wolf is a wolf advising the 𝛼 wolf in terms of decision making. The delta (𝛿) wolves are subordinate wolves 
of the 𝛼 and 𝛽 with the role of helping to hunt, guarding the boundaries, and protect the groups. The 𝜔 
wolf group is the wolf that causes mistakes. 

The grey wolves have 3 phases in hunting prey: tracking, siege, and attacking stages. From this behav ior, 
tracking and siege phases are formulated by the following Equations ( 1), (2), (3), and (4): 

�⃑⃑� = |𝐶 ∙ 𝑋 𝑝(𝑖𝑡) − 𝑋 (𝑖𝑡)| (1) 

𝑋 (𝑖𝑡 + 1) = 𝑋 𝑝(𝑖𝑡) − 𝐴 ∙ �⃑⃑� (2) 

𝐴 = 2𝑎 ∙ 𝑟 1 − 𝑎   (3) 

𝐶 = 2 ∙ 𝑟 2  (4) 

Where looping (iteration) in GWO denotes by 𝑖𝑡. 𝑋 𝑝 is the vector of the prey position, and 𝑋  represents the 
position vector of the grey wolf. �⃑⃑� , 𝐴 , and 𝐶  represent the vector coefficients. The behavior of capturing 
prey is indicated by the value of a decreasing linearly from 2 to 0 during iteration. The 𝑟1 dan 𝑟2 are random 
vectors with values from 0 to 1. 

The hunt is led by 𝛼, while 𝛽 and 𝛿 occasionally hunt. Therefore, 𝛼 is the first best candidate solution, 𝛽 
second, and 𝛿 third. In finding the optimal position, hunting is represented in Equations (5), (6), and (7). 

�⃑⃑� 𝛼 = |𝐶 1 ∙ 𝑋 𝛼 − 𝑋 | , �⃑⃑� 𝛽 = |𝐶 2 ∙ 𝑋 𝛽 − 𝑋 | , �⃑⃑� 𝛿 = |𝐶 3𝑋 𝛿 − 𝑋 | (5) 

𝑋 1 = 𝑋 𝛼 − 𝐴 1 ∙ (�⃑⃑� 𝛼) , 𝑋 2 = 𝑋 𝛽 − 𝐴 2 ∙ (�⃑⃑� 𝛽) , 𝑋 3 = 𝑋 𝛿 − 𝐴 3 ∙ (�⃑⃑� 𝛿) (6) 

�⃗�(𝑖𝑡 + 1) =
�⃑� 1+�⃑� 2+�⃑� 3

3
(7) 

The GWO algorithm proposed by Mirjalili et al. (2014) is an algorithm to solve continuous problems. As 
described in section 2, the SVSB inventory model problem was categorized as a mixed problem. For this 
reason, it was more appropriate if three decision variables were used in this problem. Two decision 
variables: frequency of raw material ordering (𝑚) and delivery of finished products to buyers (𝑛), were the 
integers. Furthermore, the time decision variable during the Inventory cycle (𝑇) was continuous. Therefore, 
three (3) dimensions (decision variables) were utilized in GWO to optimize the SVSB inventory model. For 
the conversion from a continuous number to an integer, this study proposed rounding for the v ariables 𝑚 
and 𝑛. An illustration of the conversion of decision variables is presented in Figure 3. If the decimal values 
of 𝑚 and 𝑛 were above 0.5, then the 𝑚 and 𝑛 were rounded up. 

Conversely, if the decimal values for 𝑚 and 𝑛 were below 0.5, the values were rounded down. To optimize 
the SVSB inventory model, the data inputted included production data, demand data, cost data, and quality 
data. The required initialization of GWO data included the number of wolves or search agents. The 
dimensions (decision variables) used were the three (𝑚, 𝑛, 𝑇), the maximum iteration, and the upper and 
lower limits for the decision variables. The fitness value at GWO was based on the 𝐽𝑇𝑃 value, which was 
calculated based on Equation (8). GWO's pseudo code for the SVSB inventory model is shown in Al gorithm 
1. 

Figure 3. Illustration of Decision Variable Conversion. 

1 

m n T 

14.78 7.94 0.323 

15 8 0.323 



Dana Marsetiya Utama et al. / Int. J. Food System Dynamics 13 (2), 2022, 225-246 

231 

Table 2 
Algorithm 1. GWO Pseudo-code for SVSB Inventory Model. 

Input IPP data: demand, production rate, costs, quality  
Initialize the GWO data: Population, Dimension, max iteration, upper bound, and lower bound 

Initialize 𝑎, 𝐴, and 𝐶 to get the position (𝑚,𝑛, 𝑇) 

Calculate the fitness of each search agent (𝐽𝑇𝑃) 

𝑋𝛼 = the best search agent  

𝑋𝛽 = the second-best search agent  

𝑋𝛿 = the third best search agent  
While (t < Max number of iterations)  

for each search agent 

Update the position of the current search agent (update 𝑚,𝑛, 𝑇) 
end for  

Update 𝑎, 𝐴, and 𝐶  
Calculate the fitness of all search agents 

Update 𝑋𝛼, 𝑋𝛽, and 𝑋𝛿  
t = t + 1  

end while  

return 𝑋𝛼 

5 Data and Experimental Procedure 

5.1 Data 

The research data were based on case study data of food companies in Indonesia. The research data are 
presented in Table 3. 

Table 3 
Research Data 

Parameters Value 

P 1,418 kg/month 
D 1,298 kg/bulan 
λ 7.2 

Closs 7,200 IDR/liter 
Csale 85,000 IDR/kg 

Cr 7,200 IDR/liter 
Cp 550 IDR/kg 
Ar 50,000 IDR/delivery 
Ap 50,000 IDR/Delivery 
Sp 60,000 IDR/Setup 
Hr 520 IDR/(liter/month) 
Hp 528 IDR/(kg/month) 

pmax 105,000 IDR/kg 
pmin 0 IDR/kg 

k 0.5 - 
𝜏sl 8 month 

𝜏Start 6 month 
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5.2 Experimental Procedure 

In this section, this study describes the experimental procedure in optimizing SVSB inventory. The GWO 
parameters used in optimizing the SVSB inventory model are presented in Table 3. The optimization results 
using the GWO algorithm were used to test the sensitivity analysis of the SVSB model. The variables used 
in the sensitivity analysis were the frequency of raw material orders (𝑚), the frequency of delivery of the 
finished product (𝑛), the inventory cycle time (𝑇), the rate of quality degradation of raw materials (𝑘), and 
the conversion coefficient of the finished product to raw materials (𝜆). Analysis of the effects of 𝑚 and 𝑛 
on costs and the revenue and JTP was carried out 21 times. The value of the decision variables 𝑚 and 𝑛 was 
changed from 1 to 100. The effect of 𝑇 on costs, revenue, and JTP was tested 20 times. The decision variable 
𝑇 was changed from a value of 0.05 to 1. The effect of the rate of quality degradation of raw materials (𝑘) 
on cost and profit was shifted by nine experiments. The value of 𝑘 was changed from a value of 0.1 to 0.9. 
The effect of 𝜆 on costs, revenue, and 𝐽𝑇𝑃 was carried out 14 times. All sensitivity analysis trials were 
recorded as 𝐽𝑇𝑃, 𝑇𝐶𝑟𝑚, 𝑇𝐶𝑝𝑚, 𝑇𝐶𝑝𝑟 and 𝐽𝑇𝑅. 

To test the performance of the GWO algorithm, this study also compared it with GA. Comparisons were 
made with ten different experimental data demands with a range of 1000 – 1350. Each experiment was 
recorded JTP and Computation Time. Furthermore, to evaluate the algorithm's performance, we used the 
percentage of the algorithm gap solution on the optimal solution (Equation 8) (D. M. Utama, Widodo, 
Ibrahim, and Dewi, 2020) and the Solution Ratio (SR) (Equation 9) (Dewi and Utama, 2021). Finally, the JTP 
and Computation Time results from GWO and GA were statistically tested using the Wilcoxon Test, which 
was run using SPSS 21. 

𝐺𝑎𝑝𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
|𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚−𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑚𝑎𝑙|

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑚𝑎𝑙
× 100%  (8) 

𝑆𝑅 =
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑚𝑎𝑙
× 100% (9) 

The GA algorithm parameters used as benchmarks are presented in Table 4. The GA parameters used were 
based on research conducted by Fauza et al. (G. Fauza, Y. Amer, S. H. Lee, and H. Prasetyo, 2015). The GWO 
algorithm was compared with the GA algorithm to determine the JTP on the SVSB inventory model problem. 
In addition, to determine the performance of the GWO and GA algorithms, the total profit generated in 
each iteration was recorded. The algorithm performance was then compared. The comparison was done 
using convergence analysis on both algorithms. The convergence curve was formed by moving the solution 
value from iteration to iteration towards a concentrated point (van den Bergh and Engelbrecht, 2006). This 
experiment was run using the Matlab 2018a software on Windows 10 Intel i7 RAM 8 GB. 

Table 4 
GA benchmark algorithm parameters 

Parameters Value 

Population numbers 100 
Iteration maximum 100 

Dimension 3 
Upper Bound [100 100 1] 
Lower Bound [1 1 0] 

Crossover Rate  0.7 
Mutation 0.2 
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6 Results and Discussion 

6.1 SVSB Optimization using GWO 

The optimization results of the SVSB and GWO problems are presented in Table 5. The results indicate that 
the optimal JTP value was 66,029,518 IDR. The optimal decision variable for the frequency of raw material 
delivery (m) was 12 times, the frequency of delivery of the finished product (n) was four times, and the 
production cycle time (T) was 0.76 months. 

Table 5 
Optimization Results with GWO 

GWO Algorithm 

Decision Variable 

m n T 

12 4 0,76 

Vendor Buyer Total 
Total Cost (IDR)  69,932,216   110,658,266   180,590,482 
Revenue (IDR)  110,330,000   136,290,000   246,620,000 

Total Profit (IDR)  40,397,784   25,631,734  66,029,518 

6.2 Sensitivity Analysis 

Based on the optimization results with GWO, the optimal raw material delivery frequency (m) was 12 times. 
With other decision variables that have not been changed, the results of 21 trials of changes in m on cost 
and profit are presented in Appendix Table B-1. The analysis results showed that m does not affect 𝑇𝐶𝑝𝑚, 
𝑇𝐶𝑝𝑟, and 𝐽𝑇𝑅. However, m affects TCrm and JTP. When the m value was increased and decreased from the 
optimal value (12), the resulting TCrm became greater. Thus, the JTP system of SVSB was getting smaller. 

The experiment results on the effect of n on cost and profit are presented in Appendix Table B-2. The 
analysis results projected that n does not affect TCrm and JTR. However, n affects 𝑇𝐶𝑝𝑚, 𝑇𝐶𝑝𝑟, and 𝐽𝑇𝑃. 
When the value of n was increased and decreased from the optimal value (4), the issued TCpr was greater, 
and the resulting TCpm was smaller. Furthermore, the value of n was increased and derived from the 
optimal value resulting in a smaller JTP for the SVSB system. 

The results of the experiment on the effect of T on cost and profit are presented in Appendix Table B-3. The 
results of the analysis suggested that T does not affect JTR. However, T affects𝑇𝐶𝑝𝑚, 𝑇𝐶𝑝𝑟, 𝑇𝐶𝑟𝑚, and 𝐽𝑇𝑃. 
When the T value was increased and decreased from the optimal value (0.76), the resulting 𝐶𝑝𝑚, 𝑇𝐶𝑝𝑟, and 
𝑇𝐶𝑟𝑚 were greater. Consequently, the SVSB system's JTP value was getting smaller. 

The experimental results of k on cost and profit are presented in Appendix Table B-4, and the experimental 
results of the effect of λ on cost and profit are presented in Appendix Table B-5. The experimental results 
indicated that k and λ do not affect TCpm, TCpr, and JTR. However, k and λ affect TCrm and JTP. When the 
values of k and λ were increased, the issued TCrm was greater. Consequently, the SVSB system's JTP value 
was getting smaller. 

6.3 Computational complexity 

The computational complexity of any metaheuristic algorithm should be minimized so that real-world 
optimization problems can be solved more quickly. Consequently, it is critical to examine the computational 
complexity of any search algorithm to determine its effectiveness in solving optimization problems.  

It is possible to calculate the worst-case computational time for GWO's stepwise computational complexity: 
First, algorithms have the complexity of O(3.N), where 3 describe decision variables in the SVSB problem. N 
is the number of grey wolves in the population in initialization. Algorithm leaders can be chosen in O(3.N) 
computational effort by performing the linear search to find the leaders.  

After the while loop,  algorithms begin their main computations. It takes O(3.N) time to update each wolf's 
position in the original GWO, so the computational complexity is  O(3.N). The computational complexity 
increases by the maximum number of iterations because updating the wolf continues until the maximum 
number of iterations is not reached. Alpha wolf can be selected in O(3.N) computational effort in the final 
step of the algorithm. GWO's total computation complexity is O(3.N+3.TN) after adding up all of the 
previously mentioned complexities. 
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6.4 Algorithm Comparison 

The SVSB inventory model optimization results with the GA algorithm are shown in Table 6. The optimization 
results portrayed that the JTP for the SVSB system was 66,021,603. IDR with the frequency of raw material 
delivery (m) as much as 14 times, frequency of delivery of finished products (n) as much as five times, and 
production cycle time (T) for 0.84 months. Based on the comparisons in Table 4 and Table 10, total costs at 
vendors at GWO were slightly larger by 0.027% than GA. In comparison, costs at GWO buyers were slightly 
smaller by 0.024% from GA. The JTP generated by the GWO algorithm was more optimal by 0.012% than 
GA. 

Table 6 
Optimization Results with GA 

GA 

Decision Variable 

m n T 

14 5 0,84 

Vendor Buyer Total 
Total Cost (IDR)  69,913,210  110,685,187  180,598,397 
Revenue (IDR) 110,330,000 136,290,000 246,620,000 

Total Profit (IDR) 40,416,790 25,604,813  66,021,603 

In addition to the JTP comparison, this study compared the GWO and GA algorithms based on the JTP for 
each iteration. The convergence curve of the GWO and GA algorithms can  be observed in Figure 4. The 
experimental results pinpointed that the GWO algorithm reached the convergent point in the 10th iteration. 
In contrast, GA reached the convergent point in the 40th iteration. Under van den Bergh and Engelbrecht 
(2006), the criterion for the optimal convergence rate is the velocity in reaching the convergent point.  
Therefore it is concluded that the performance of the GWO algorithm is better than GA.  

Figure 4. Convergence curve of the GWO and GA algorithms 

The results of 10 trials between the GWO and GA algorithms are presented in Table 7. A percentage average 
gap solution of 0 percent indicates no error in the gap solution. To tell if the solution is good, the solution 
gap must be greater than 0. Based on Table 7, average gaps in optimal solutions for GWO and GA are 0% 
and 0.01%. The average gap solution shows that the GWO algorithm is more competitive than GAalgorithms. 

In Table 7, SR also showed that the proposed algorithm is superior to other algorithms regarding the average 
percentage of solution ratio (SR). GWO and GA produce SR values of 100% and 99.97%. It shows that GWO 
was successful in resolving the SVSB issue. 
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Table 7. 
Results of 10 trials between GWO and GA Algorithms 

Demand (D) JTP (IDR) 𝐺𝑎𝑝𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (%) 𝑆𝑅 (%) Computation Time 
(second) 

GWO GA GWO GA GWO GA GWO GA 

1350 66,076,515 66,060,134 0 0.02 100 99.98 18.1569 90.5471 

1325 66,076,515 66,076,515 0 0.00 100 100 16.5649 85.9842 

1300 66,076,515 66,055,145 0 0.03 100 99.97 15.8937 87.3147 

1298 66,029,518 66,021,603 0 0.01 100 99.99 19.2145 89.4712 

1250 66,057,882 66,057,882 0 0.00 100 100 19.5628 82.5984 

1200 66,076,053 66,068,162 0 0.01 100 99.99 16.7661 86.4571 

1150 66,076,053 66,072,725 0 0.01 100 99.99 18.9469 89.5478 

1100 66,076,053 66,074,210 0 0.01 100 99.99 20.5606 90.8475 

1050 66,076,053 66,072,725 0 0.01 100 99.99 18.3714 87.6871 

1000 66,075,345 66,072,725 0 0.01 100 99.99 20.8346 91.8726 

Average 0 0.01 100 99.97 18.4872 88.2328 

The results of the Wilcoxon statistical test on SR are presented in Table 8. These results indicate that the 
proposed GWO algorithm produces an optimal solution from the Wilcoxon statistical test compared to the 
GA algorithm. It is evident from the value of Asymp. Sig (0.008), which is smaller than 0.05. In addition, the 
Wilcoxon test results for computing time are shown in Table 9. These results indicate that the proposed 
algorithm produces a faster computational time in solving SVSB. It is evident from the value of Asymp. Sig 
(0.005), which is smaller than 0.05. 

Table 8. 
Wilcoxon Test Results on SR 

Algorithm Mean Std. Deviation Minimum Maximum Z Asymp. Sig. 

GWO 100.0000 0.00000 100.00 100.00 -2.636 0.008 

GA 99.9890 .00876 99.97 100.00 

Table 9. 
Wilcoxon test results computing time 

Algorithm Mean Std. Deviation Minimum Maximum Z Asymp. Sig. 

GWO 18.4872 1.67374 15.89 20.83 -2.803 0.005 

GA 88.2328 2.78488 82.60 91.87 

Conclusion 

This study was objected to develop an SVSB inventory model by considering exponential quality deg radation 
with the GWO algorithm as an optimization tool. This research has successfully developed the SVSB 
inventory model and GWO for optimization tools. The results showed that the rate of quality degradation 
of raw material k affected TCrm and JTP. Overall, this study concludes that the GWO algorithm has a superior 
performance for SVSB optimization compared to GA. Some of the limitations of this study include that GWO 
suffers from issues like poor local search performance and a slow convergence rate. Moreover, several 
assume the number of demands is fixed and constant. In future studies, improved GWO needs to be 
proposed to improve local search performance and convergence rate. Furthermore, uncertain demand 
considerations must be investigated in the next SVSB model. 
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Appendix 

Appendix A 

This section describes the assumptions, notations, and the mathematical model of the SVSB inventory 
model with exponential quality degradation for food products. The assumptions in this problem are 1) 
Quality of raw materials decreases exponentially during storage, 2) Production rate and demand rate are 
constant, 3) Delivery lead time is negligible, 4) Shortage and backorder are not allowed, 5) Production rate 
> demand rate, and 6). Therefore, the exponential quality degradation rate f or the one cycle is 0 to 1.

The notations used in this model include: 

𝑃  : production rate for producing the finished product (units/month)  

𝐷  : number of demands for finished products (units/month)  

𝜆 : conversion coefficient of the finished product to raw material  

𝑞𝑟   : the size of the raw material order (unit)  

𝑞𝑝 : finished product delivery size (unit) 

𝑘   : rate of quality degradation of raw materials (quality units/month)  

𝑄𝑚𝑎𝑥 : maximum quality of raw material (quality unit)  

𝑄𝑚𝑖𝑛 : minimum quality of raw materials (quality units) 

𝑄(𝑡) : remaining quality at time t for raw material (quality units)  

𝑐𝑙𝑜𝑠𝑠 : costs due to quality degradation of raw materials (IDR/quality units/month)  

𝑐𝑠𝑎𝑙𝑒 : cost of purchasing finished products from buyers to vendors (rupiahs/order)  

𝑐𝑟  : the cost of purchasing raw materials (rupiahs/order)  

𝑐𝑝  : costs for processing the finished product (IDR/unit)  

𝐴𝑟 : transportation costs for the procurement of materials (IDR/order)  

𝐴𝑝 : transportation costs for the delivery of the finished product (IDR/delivery)  

𝑆𝑝  : installation costs for processing the finished product (IDR/month)  

𝐻𝑟  : raw material storage costs (IDR/unit/month)  

𝐻𝑝 : the cost of storing the finished product (IDR/unit/month)  

𝐼𝑟𝑚 : average raw material inventory at vendors (unit)  

𝐼𝑝𝑚 : the average finished product inventory at the vendor (unit)  

𝐼𝑝𝑟  : average finished product inventory at buyers (unit)  

τ𝛥 : finished product delivery intervals

τ𝑚𝑎𝑥 : maximum duration for storage of raw materials (month) 

τ𝑠𝑙  : the expiration time of the finished product (month)  

τ𝑆𝑡𝑎𝑟𝑡 : the initial time of the deterioration of the finished product (month)  

𝐸𝑖  : batch 𝑖 product age when sent to the buyer (month)  

𝑅𝑖  : total income in batch 𝑖 (IDR/month)  

𝑃𝑚𝑎𝑥 : maximum product price (IDR/unit) 

𝑝𝑚𝑖𝑛 : minimum product price (IDR/unit) 

𝑝(𝑡) : product price based on product age the 𝑡 − 𝑡ℎ (IDR/unit)  

𝐿 : total costs due to quality degradation of raw materials (IDR/month)  

𝑇𝐶𝑟𝑚 : the total cost of the raw material inventory system at the vendor (IDR/month) 

𝑇𝐶𝑝𝑚 : the total cost of the finished product Inventory system at the vendor (IDR/month) 

𝑇𝐶𝑝𝑟 : the total cost of the finished product Inventory system at the buyer (IDR/month)  
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𝐽𝑇𝑅 : Total income integrated Inventory system (IDR/month)  

𝐽𝑇𝑃 : the total profit of the integrated Inventory system (IDR/month) 

𝑚  : frequency of ordering raw materials (times/order)  

𝑇  : time/length during the Inventory cycle (month)  

𝑛  : delivery frequency of finished products to buyers (times/delivery)  

The researcher proposes a mathematical model to solve the SVSB problem in this section. The proposed 
mathematical model was developed based on the model constructed by Fauza et al (Gusti Fauza et al., 
2018). Three parts of the proposed mathematical model are; 1) a mathematical model for the quality 
degradation of raw materials, 2) a mathematical model for value losses arising from quality degradation of 
finished products, and 3) a mathematical model for the average inventory of raw materials and finished 
products.  

Based on Figure 2, there were three types of models to determine the average inventory, namely raw 
materials at the vendor (𝐼𝑟𝑚), the finished product at the vendor (𝐼𝑝𝑚), and finished products in buyers (𝐼𝑝𝑟), 

which sequentially can be seen in the Equation (A-1), (A-2) and (A-3). 

𝐼𝑟𝑚 =
𝜆𝐷2𝑇

2𝑚𝜆𝑃
(A-1) 

𝐼𝑝𝑚 =
𝐷𝑇

2𝑛
(
𝐷

𝑃
(2 − 𝑛) + (𝑛 − 1)) (A-2) 

𝐼𝑝𝑟 =
𝐷𝑇

2𝑛
(A-3) 

In the quality degradation model, According to Rong, Akkerman, and Grunow (2011), the quality of food 
degradation depends on the environment and storage time. An illustration of the quality of food 
degradation is presented in Figure A-1. If k = 0 is called a zero-order reaction, then the quality decreases 
linearly each time indicated by line A. However, if k = 1 is denoted as the first-order reaction, then the 
quality decreases exponentially over time, shown by line B. Referring to Rong et al. (2011), the raw material 
which decreases exponentially is displayed using Equation (A-4). 

R
e

m
a

in
in

g
 Q

u
a

lit
y
 (

%
)

Time (days)

B

A

A = Zero-order reaction

B = First-order reaction

Figure A-1. Illustration of decreased quality of food products 

𝑄(𝑡) = 𝑄𝑚𝑎𝑥  𝑒
−𝑘𝑡 (A-4) 

Where 𝑄(𝑡) is the level of quality remaining at the t-th time. The loss of quality in the period 0 to t was the 
𝑄𝑚𝑎𝑥 to 𝑄(𝑡), which can be denoted by ∆𝑄(𝑡) so that it is stated by Equation (A-5). 
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∆𝑄(𝑡) = 𝑄𝑚𝑎𝑥(1 − 𝑒−𝑘𝑡) (A-5) 

The total cost of quality loss per unit time 𝐿(𝑚, 𝑇) of raw materials for all batches during one production 
cycle can be represented by Equation (A-6). 

𝐿(𝑚, 𝑇) =  𝑐𝑙𝑜𝑠𝑠
𝑚𝜆𝑃

𝑇
∫ 𝛥𝑄(𝑡)

𝜆𝐷𝑇

𝑚𝜆𝑃
0

𝑑𝑡  (A-6) 

The total cost of the raw material inventory system at the vendor (𝑇𝐶𝑟𝑚(𝑚, 𝑇))) is the sum of the costs of 
purchasing, transportation, storage, and quality degradation, presented in Equation (A-7).  

𝑇𝐶𝑟𝑚(𝑚, 𝑇) = 𝑐𝑟𝜆𝐷 + 𝐴𝑟
𝑚

𝑇
+ 𝐻𝑟

𝜆𝐷2𝑇

2𝑚𝜆𝑃
+ 𝑐𝑙𝑜𝑠𝑠

𝑚𝜆𝑃

𝑇
∫ ∆𝑄(𝑡) 𝑑𝑡

𝜆𝐷𝑇

𝑚𝜆𝑃
0

 (A-7) 

The total cost of the finished product Inventory system at the vendor (𝑇𝐶𝑝𝑚(𝑛, 𝑇)) is the sum of processing 

costs, installation costs, and storage costs presented in Equation (A-8). 

𝑇𝐶𝑝𝑚(𝑛, 𝑇) = 𝑐𝑝𝐷 +
𝑆𝑝

𝑇
+ 𝐻𝑝 (

𝐷𝑇

2𝑛
(
𝐷

𝑃
(2 − 𝑛) + (𝑛 − 1))) (A-8) 

The total cost of the finished product Inventory system at the buyer (𝑇𝐶𝑝𝑟(𝑛, 𝑇)) is the sum of the purchase 

costs, transportation costs, and storage costs presented in Equation (A-9). 

𝑇𝐶𝑝𝑟(𝑛, 𝑇) = 𝑐𝑠𝑎𝑙𝑒𝐷 + 𝐴𝑝
𝑛

𝑇
+ 𝐻𝑝 (

𝐷𝑇

2𝑛
) (A-9) 

In the revenue model from buyers, based on Gusti Fauza et al. (2016), buyers set selling prices to consumers 
in three regions. The batch's age determines the price of each batch of product before it is shipped. Figure 
A-2 depicts the pricing structure based on the shelf life of each batch. The selling price before quality
degradation occurs theτ𝑆𝑡𝑎𝑟𝑡 which was the maximum product price of 𝑝𝑚𝑎𝑥 (region I). Furthermore, the
remaining stock was sold at a discount price to attract more demands (region II). Meanwhile, products that
have expired (reaching τ𝑠𝑙) were set at the lowest price of 𝑝𝑚𝑖𝑛 (region III). The price reduction policy is
formulated using Equation (A-10).

𝑝(𝑡) = {

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛 + 
𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛

𝜏𝑠𝑙−𝜏𝑠𝑡𝑎𝑟𝑡
 

𝑝𝑚𝑖𝑛

( 𝜏𝑠𝑙 − 𝑡) 
0 ≤  𝑡  < τ𝑆𝑡𝑎𝑟𝑡

 τ𝑆𝑡𝑎𝑟𝑡 ≤ 𝑡 < τ𝑠𝑙

𝑡 ≥  τ𝑠𝑙

 

𝑟𝑒𝑔𝑖𝑜𝑛 𝐼
 𝑟𝑒𝑔𝑖𝑜𝑛 𝐼𝐼
 𝑟𝑒𝑔𝑖𝑜𝑛 𝐼𝐼𝐼

 (A-10) 

The buyer accepted a batch that has 𝐸𝑖  less than τ𝑆𝑡𝑎𝑟𝑡 to generate more income. The batch age (𝐸𝑖) is 
denoted in Equation (A-11). Each 𝑖 batch received by the buyer followed the 3 cases according to when the 
product was last consumed or 𝐸𝑖  +  τ𝛥.
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Figure A-2. Price function based on the shelf life of each batch 

𝐸𝑖 = (𝑖 − 1)
𝑇

𝑛
− (𝑖 − 2)

𝐷𝑇

𝑛𝑃
         (A-11)

Case 1: 𝐸𝑖  + τ𝛥  <  τ𝑆𝑡𝑎𝑟𝑡 ,  the annual revenue earned from this batch is determined by Equation (A-12). 

𝑅𝑖(𝑛, 𝑇) =
𝐷

𝑇
𝑃𝑚𝑎𝑥𝜏𝛥         (A-12)

Case 2: τ𝑆𝑡𝑎𝑟𝑡 ≤ (𝐸𝑖  +  τ𝛥)  < τ𝑠𝑙, the annual revenue earned from this batch is determined by Equation (A-
13). 

𝑅𝑖(𝑛, 𝑇) =  
𝐷

𝑇
[𝑃𝑚𝑎𝑥(𝜏𝑆𝑡𝑎𝑟𝑡 − 𝐸𝑖) + ∫ 𝑝(𝑡)𝑑𝑡

𝐸𝑖+ 𝜏𝛥

𝜏𝑆𝑡𝑎𝑟𝑡
] (A-13) 

Case 3: 𝐸𝑖  + τ𝛥  ≥  τ𝑠𝑙 ,  Equation (A-14) represents the annual revenue function of this batch. 

𝑅𝑖(𝑛, 𝑇) =  
𝐷

𝑇
[𝑃𝑚𝑎𝑥(τ𝑆𝑡𝑎𝑟𝑡 − 𝐸𝑖) + ∫ 𝑝(t)𝑑𝑡

τ𝑠𝑙

τ𝑠𝑡𝑎𝑟𝑡
+ 𝑝𝑚𝑖𝑛(𝐸𝑖 + τ𝛥 − τ𝑠𝑙)] (A-14) 

Total income integrated Inventory system (𝐽𝑇𝑅(𝑇, 𝑛)) is the sum of the vendor's income with the buyer's 
income presented in Equation (15).  

𝐽𝑇𝑅(𝑇, 𝑛) = 𝑐𝑠𝑎𝑙𝑒𝐷 + ∑ 𝑅𝑖(𝑇, 𝑛)𝑛
𝑖=1  (A-15) 

Then the total integrated inventory profit can be calculated by subtracting the total syste m cost of raw 
materials, finished products at vendors, and finished products at buyers (Equations A-7, A-8, and A-9) to 
total system revenue (Equation A-15). Finally, the total profit is formulated in Equation A-16. 

This study implemented three decision variables the frequency of raw material orders (𝑚), frequency of 
delivery of finished products to buyers (𝑛), and time during the Inventory cycle (𝑇). The decision variable 
for ordering frequency (𝑚) and delivery (𝑛) is an integer > 0. The time decision variable during the Inventory 
cycle (𝑇) is a real number with a range of  0 to 1. The mixed-integer non-linear programming model for SVSB 
inventory model problems is described as follows: 

Maximize : 
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𝐽𝑇𝑃(𝑚, 𝑇, 𝑛) = 𝐽𝑇𝑅(𝑇, 𝑛) − (𝑇𝐶𝑟𝑚(𝑚, 𝑇) + 𝑇𝐶𝑝𝑚(𝑛, 𝑇) + 𝑇𝐶𝑝𝑟(𝑛, 𝑇)) (A-16) 

Subject to : 

𝑃 ≥ 𝐷 ;  (A-17) 

𝐸𝑖 < τ𝑠𝑡𝑎𝑟𝑡 ; for i = 1, 2, ...n (A-18) 

T > 0 ;  (A-19) 

m, n > 0 (integer number) ; (A-20) 

Equation (A-16) is the objective function of the SVSB inventory model problem to maximize profit. The 
constraint of Equation (A-17) ensures that the production level can meet all demands. Equation constraint 
(A-18) provides that all batch i (𝐸𝑖) arrive at the buyer's warehouse before the initial time of deterioration 
of the finished product. Equation constraints (A-19) and (A-20) guarantee that the decision variable is not 
zero and integer number. 

Appendix B 

Table B-1. 
The effect of changes in m on cost and profit 

𝒎 𝑛 𝑇 𝑘 𝜆 𝐽𝑇𝑃 (IDR) 
𝑇𝐶𝑟𝑚 
(IDR) 

𝑇𝐶𝑝𝑚 
(IDR) 

𝑇𝐶𝑝𝑟 (IDR) 𝐽𝑇𝑅 (IDR) 

1 4 0.76 0.50 7.2 57,047,690 78,045,069 868,974 110,658,265 246,620,000 

5 4 0.76 0.50 7.2 65,141,311 69,951,448 868,974 110,658,265 246,620,000 

10 4 0.76 0.50 7.2 65,966,234 69,126,526 868,974 110,658,265 246,620,000 

15 4 0.76 0.50 7.2 66,027,751 69,065,008 868,974 110,658,265 246,620,000 

20 4 0.76 0.50 7.2 65,895,146 69,197,613 868,974 110,658,265 246,620,000 

25 4 0.76 0.50 7.2 65,684,361 69,408,398 868,974 110,658,265 246,620,000 

30 4 0.76 0.50 7.2 65,434,338 69,658,421 868,974 110,658,265 246,620,000 

35 4 0.76 0.50 7.2 65,161,838 69,930,921 868,974 110,658,265 246,620,000 

40 4 0.76 0.50 7.2 64,875,266 70,217,493 868,974 110,658,265 246,620,000 

45 4 0.76 0.50 7.2 64,579,301 70,513,458 868,974 110,658,265 246,620,000 

50 4 0.76 0.50 7.2 64,276,755 70,816,004 868,974 110,658,265 246,620,000 

55 4 0.76 0.50 7.2 63,969,419 71,123,341 868,974 110,658,265 246,620,000 

60 4 0.76 0.50 7.2 63,658,487 71,434,272 868,974 110,658,265 246,620,000 

65 4 0.76 0.50 7.2 63,344,789 71,747,970 868,974 110,658,265 246,620,000 

70 4 0.76 0.50 7.2 63,028,916 72,063,844 868,974 110,658,265 246,620,000 

75 4 0.76 0.50 7.2 62,711,302 72,381,458 868,974 110,658,265 246,620,000 

80 4 0.76 0.50 7.2 62,392,273 72,700,486 868,974 110,658,265 246,620,000 

85 4 0.76 0.50 7.2 62,072,079 73,020,680 868,974 110,658,265 246,620,000 

90 4 0.76 0.50 7.2 61,750,914 73,341,845 868,974 110,658,265 246,620,000 

95 4 0.76 0.50 7.2 61,428,931 73,663,829 868,974 110,658,265 246,620,000 

100 4 0.76 0.50 7.2 61,106,252 73,986,508 868,974 110,658,265 246,620,000 
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Table B-2. 
The effect of changes in n on cost and profit 

𝑚 𝒏 𝑇 𝑘 𝜆 𝐽𝑇𝑃 (IDR) 𝑇𝐶𝑟𝑚 (IDR) 
𝑇𝐶𝑝𝑚 
(IDR) 

𝑇𝐶𝑝𝑟 (IDR) 𝐽𝑇𝑅 (IDR) 

12 1 0.76 0.50 7.2 65,869,299 69,063,241 1,031,238 110,656,220 246,620,000 

12 5 0.76 0.50 7.2 65,987,568 69,063,241 858,16 110,711,033 246,620,000 

12 10 0.76 0.50 7.2 65,706,299 69,063,241 836,52 111,013,937 246,620,000 

12 15 0.76 0.50 7.2 65,393,244 69,063,241 829,31 111,334,204 246,620,000 

12 20 0.76 0.50 7.2 65,072,243 69,063,241 825,70 111,658,811 246,620,000 

12 25 0.76 0.50 7.2 64,748,063 69,063,241 823,54 111,985,154 246,620,000 

12 30 0.76 0.50 7.2 64,422,295 69,063,241 822,10 112,312,365 246,620,000 

12 35 0.76 0.50 7.2 64,095,618 69,063,241 821,07 112,640,072 246,620,000 

12 40 0.76 0.50 7.2 63,768,373 69,063,241 820,30 112,968,089 246,620,000 

12 45 0.76 0.50 7.2 63,440,750 69,063,241 819,69 113,296,313 246,620,000 

12 50 0.76 0.50 7.2 63,112,862 69,063,241 819,21 113,624,682 246,620,000 

12 55 0.76 0.50 7.2 62,784,782 69,063,241 818,82 113,953,156 246,620,000 

12 60 0.76 0.50 7.2 62,456,557 69,063,241 818,49 114,281,708 246,620,000 

12 65 0.76 0.50 7.2 62,128,221 69,063,241 818,22 114,610,322 246,620,000 

12 70 0.76 0.50 7.2 61,799,797 69,063,241 817,98 114,938,983 246,620,000 

12 75 0.76 0.50 7.2 61,471,304 69,063,241 817,77 115,267,682 246,620,000 

12 80 0.76 0.50 7.2 61,142,754 69,063,241 817,59 115,596,413 246,620,000 

12 85 0.76 0.50 7.2 60,814,157 69,063,241 817,43 115,925,169 246,620,000 

12 90 0.76 0.50 7.2 60,485,521 69,063,241 817,29 116,253,946 246,620,000 

12 95 0.76 0.50 7.2 60,156,853 69,063,241 817,16 116,582,741 246,620,000 

12 100 0.76 0.50 7.2 59,828,156 69,063,241 817,05 116,911,551 246,620,000 

Table B-3. 

The effect of change in n on cost and profit 

𝑚 𝑛 𝑻 𝑘 𝜆 𝐽𝑇𝑃 (IDR) 𝑇𝐶𝑟𝑚 (IDR) 𝑇𝐶𝑝𝑚 (IDR) 𝑇𝐶𝑝𝑟 (IDR) 𝐽𝑇𝑅 (IDR) 

12 4 0.05 0.50 7.2 51,013,081 79,353,726 1,918,908 114,334,283 246,620,000 

12 4 0.10 0.50 7.2 59,538,464 73,419,052 1,323,916 112,338,566 246,620,000 

12 4 0.15 0.50 7.2 62,330,595 71,484,296 1,128,925 111,676,183 246,620,000 

12 4 0.20 0.50 7.2 63,689,474 70,549,458 1,033,933 111,347,133 246,620,000 

12 4 0.25 0.50 7.2 64,475,100 70,014,540 978,94 111,151,417 246,620,000 

12 4 0.30 0.50 7.2 64,974,141 69,679,541 943,95 111,022,367 246,620,000 

12 4 0.35 0.50 7.2 65,309,453 69,458,746 920,39 110,931,412 246,620,000 

12 4 0.40 0.50 7.2 65,542,465 69,309,300 903,97 110,864,267 246,620,000 

12 4 0.45 0.50 7.2 65,707,304 69,207,391 892,31 110,812,995 246,620,000 

12 4 0.50 0.50 7.2 65,824,445 69,138,736 883,98 110,772,834 246,620,000 

12 4 0.55 0.50 7.2 65,906,920 69,094,242 878,08 110,740,753 246,620,000 

12 4 0.60 0.50 7.2 65,963,414 69,067,850 874,00 110,714,734 246,620,000 

12 4 0.65 0.50 7.2 65,999,942 69,055,364 871,32 110,693,376 246,620,000 

12 4 0.70 0.50 7.2 66,020,798 69,053,787 869,73 110,675,681 246,620,000 

12 4 0.75 0.50 7.2 66,029,134 69,060,921 869,03 110,660,917 246,620,000 

12 4 0.80 0.50 7.2 66,027,312 69,075,118 869,03 110,648,534 246,620,000 

12 4 0.85 0.50 7.2 66,017,138 69,095,118 869,63 110,638,111 246,620,000 

12 4 0.90 0.50 7.2 66,000,018 69,119,940 870,72 110,629,323 246,620,000 

12 4 0.95 0.50 7.2 65,977,060 69,148,811 872,22 110,621,910 246,620,000 

12 4 1.00 0.50 7.2 65,949,153 73,419,052 1,323,916 112,338,566 246,620,000 
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Table B-4. 

Effect of change in k on cost and profit 

𝑚 𝑛 𝑇 𝒌 𝜆 𝐽𝑇𝑃 (IDR) 𝑇𝐶𝑟𝑚 (IDR) 𝑇𝐶𝑝𝑚 (IDR) 𝑇𝐶𝑝𝑟 (IDR) 𝐽𝑇𝑅 (IDR) 

12 4 0.76 0.1 7.2 66,800,729 68,292,029 868,97 110,658,265 246,620,000 

12 4 0.76 0.2 7.2 66,606,809 68,485,950 868,97 110,658,265 246,620,000 

12 4 0.76 0.3 7.2 66,413,636 68,679,123 868,97 110,658,265 246,620,000 

12 4 0.76 0.4 7.2 66,221,206 68,871,552 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 7.2 66,029,518 69,063,241 868,97 110,658,265 246,620,000 

12 4 0.76 0.6 7.2 65,838,567 69,254,191 868,97 110,658,265 246,620,000 

12 4 0.76 0.7 7.2 65,648,351 69,444,408 868,97 110,658,265 246,620,000 

12 4 0.76 0.8 7.2 65,458,866 69,633,893 868,97 110,658,265 246,620,000 

12 4 0.76 0.9 7.2 65,270,109 69,822,650 868,97 110,658,265 246,620,000 

Table B-5. 

Effect of changes in λ on cost and profit 

𝑚 𝑛 𝑇 𝑘 𝝀 𝐽𝑇𝑃 (IDR) 𝑇𝐶𝑟𝑚 (IDR) 𝑇𝐶𝑝𝑚 (IDR) 𝑇𝐶𝑝𝑟 (IDR) 𝐽𝑇𝑅 (IDR) 

12 4 0.76 0.5 1 124,803,970 10,288,789 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 2 115,324,220 19,768,539 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 3 105,844,470 29,248,289 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 4 96,364,719 38,728,040 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 5 86,884,969 48,207,790 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 6 77,405,218 57,687,540 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 7 67,925,468 67,167,291 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 8 58,445,718 76,647,041 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 9 48,965,967 86,126,791 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 10 39,486,217 95,606,542 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 11 30,006,467 105,086,292 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 12 20,526,716 114,566,043 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 13 11,046,966 124,045,793 868,97 110,658,265 246,620,000 

12 4 0.76 0.5 14 1,567,216 133,525,543 868,97 110,658,265 246,620,000 




