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Abstract: 

While a successful survey requires engaged and attentive respondents, careless survey completion remains a great 

concern in online market research.  In this article, we test metrics of engagement in an online willingness-to-pay 

(WTP) study for fresh blueberry attributes using a major U.S. panel company and evaluate the impact that poorly 

behaving respondents have on subsequent data quality.  In doing so, we investigate in detail the complex joint 

relationship between attribute non-attendance (ANA) and measures of respondent engagement in web surveying.  

Using fixed latent classes, an approach known as the Equality Constrained Latent Class procedure, we export 

individual probabilistic class assignment of all levels of attribute attendance to cross reference with respondents 

who fail measures of engagement and fraudulence, and analyze their composition and impact on latent classes, 

indicating non-attendance of individual and combinations of attributes.  We also analyze engagement impacts on 

the tau variance parameter in the scaled mixed logit model and find strong links to unnecessarily increased 

heterogeneity when not properly filtering poorly behaving respondents.  While WTP estimates between 

respondents passing and failing engagement metrics are similar with the ECLC model, filtering failing respondents 

in the scaled mixed logit model reduces overall WTP estimates.  Results have implications for both WTP 

researchers and general online market researchers. 
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Online surveying has firmly established itself in the last decade as a popular, low-cost, broad-reaching 

method to conduct market research (Dillman, Smyth, and Christian 2009).  Online access panels, probability-based 

or otherwise, are a particularly popular recruiting tool in online market research due to their convenience and cost 

(Baker et al. 2010).  Agricultural market and policy research is no exception and frequently relies on online panel 

respondents (Bartels and van den Berg 2011; Ellison and Lusk 2011; Kinsey et al. 2009; Tonsor and Wolf 2010), 

especially in willingness-to-pay (WTP) literature.1

However, compensated online research through web-panels has many potential drawbacks that must be 

considered to ensure the validity of data and resulting estimates.  Incentive offers for participation may induce 

individuals to attempt to falsely “qualify” in the survey screening period and/or exert little or no effort within the 

survey, with respondents simply desiring to finish and collect payment.  Sobering questions that researchers must 

ask themselves are as follows: (1) Are all of the panel respondents in my survey exerting sufficient and genuine 

effort in their answers? and (2) If not, what potentially negative effects are these poorly behaving respondents 

introducing into the resulting dataset?  If poorly qualified (poor) respondents are in fact in the dataset and 

significantly affect data quality, then online researchers must be vigilant in controlling this problem. 

  

Especially in WTP research with choice experiments (CEs), consistency in intra-respondent choice patterns 

is crucial to determining rational preferences.  Recent work demonstrates that irrationality within the CE, as 

measured by class revealed preference axioms, is strongly predicted by poor respondent behavior such as 

fraudulently “qualifying” for the survey, missing simple embedded directives known as trap questions (TQs), and 

speeding through critical portions like the CE (Jones, House, and Gao, forthcoming).  Frequent failure of the weak 

axiom of revealed preference (WARP) and the strong axiom of revealed preference (SARP) are long-acknowledged 

indicators of poor CE data quality (Lancsar and Louviere 2006) and thus provide a time-tested lens for analysis.  

Irrational preference patterns lead to poor estimation power of statistical models and introduce significant 

variance into the calculation of an individual’s attribute coefficients.  Incomplete preferences are further related to 

processing patterns described as attribute non-attendance (ANA), or ignoring one or more attributes in a choice 

set.  ANA is receiving attention from a growing body of literature, as failing to account for this through modeling 

strategies, especially non-attendance of the price attribute, is linked to upwardly biased WTP estimates (Hess and 

Hensher 2010; Scarpa et al. 2009;).  We hypothesize that a major potential biasing component in online research 

and driver of ANA in CEs is that poor quality panel respondents may not be providing thoughtful answers to all 

questions.  While potential problems with ANA and poor respondent data quality have been separately 

acknowledged and investigated, the link between the two and the resulting effects on WTP estimates is currently 

an empirical question.   

In this study, we survey 1,880 respondents through a major U.S. panel company about their blueberry 

purchasing preferences.  We use a CE and measure respondent engagement through several classic identifiers of 

poor respondent behavior.  These include low-probability screening questions to identify respondents attempting 

to fraudulently enter the survey, trap questions (TQs), invisible speed metrics for individual survey segments, and 
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an age validation strategy.  Jointly, these quarantining filters identify respondents who have a high probability of 

fraudulence and/or inattention.  Each metric utilized can be easily incorporated into any online survey to filter 

these respondents in real time.  In this study, instead of filtering failing respondents, we retain them to more 

critically examine their preference patterns.   

We also utilize innovative scaled mixed logit models, simulating datasets both with and without 

implementation of poor respondent filters. This allows us to examine the impact of not screening poor 

respondents on results. Additionally, we will investigate the rate of ANA by respondents who do fail the screening 

criteria through the equality constrained latent class model. 

 

Background 

Researchers have long discussed the potential for poor quality data from online panels, probability-based or 

otherwise, when fraudulent or inattentive respondents are present in the sample (Miller and Baker-Prewitt 2009; 

Smith and Hofma-Brown 2005, 2006; Willems, van Ossenbrugge, and Vonk 2006).  In one study across fourteen 

popular U.S. panels, Miller (2006) finds that fraudulent and inattentive respondents composed 8–25% of the total 

sample, with inattentive respondents appearing to cause the largest bias in data.  To identify fraudulent 

respondents attempting to falsely qualify for surveys, researchers have used low-probability screening questions in 

the opening sections (Smith and Hofma-Brown 2005; Downes-Le Guin 2005).  Inattentive respondents, or 

satisficers, (Krosnick 1991) have been identified with trap questions (TQs) (Downes-Le Guin et al. 2012; Gao, 

House, and Xie 2013), thresholds for unusually fast completion times or “speeding” (Miller and Baker-Prewitt 

2009), and inconsistencies in behavioral or demographics response patterns (Author citation 2013; Miller and 

Baker-Prewitt 2009).  Satisficing is a common marketing literature term originally coined by Simon (1957) to 

describe actors failing to exert sufficient effort to maximize profit in a decision-making process; instead, actors 

seek an acceptable profit threshold.  In the case of web surveys, this translates to only completing the survey 

adequately enough to receive an incentive offer.   

Removing fraudulent and inattentive respondents who fail these quarantining metrics has been shown to 

decrease incidence of irrational response patterns in the CE, as measured by SARP and WARP (Jones, House, and 

Gao, forthcoming).  Fundamental to the choice-based approach to consumer theory, SARP and WARP have been 

argued as being superior to alternative metrics in the preference-based approach,2

Originally described by Samuelson (1938), WARP is satisfied when, given vectors of prices and attribute 

bundles (𝑝𝑡 , 𝑥𝑡) for t = 1,…,T, then bundle 𝑥1 is directly revealed preferred to a bundle 𝑥2 if 𝑝𝑡𝑥1 ≥ 𝑝𝑡𝑥2. Bundle 𝑥2 

then cannot be subsequently directly revealed preferred to 𝑥1.  SARP is a more rigorous, transitive expansion that is 

satisfied when, given the same vectors, bundle 𝑥1 is indirectly revealed preferred to 𝑥3 if a sequence exists such 

that 𝑝𝑡𝑥1 ≥ 𝑝𝑡𝑥2 and 𝑝𝑡𝑥2 ≥ 𝑝𝑡𝑥3.  While WARP is necessary for rational preferences, it is SARP, or the 

 as it allows rationality to be 

established in a directly observable manner that obliges fewer restrictions on demand and “provides a behavioral 

foundation to the theory of individual decision making” (Lancsar and Louviere 2006).   
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confirmation of a symmetric and negative semi-definite Slutsky substitution matrix, which is “necessary and 

sufficient” to assure existence of a rational preference set (Houthakker 1950).  Additionally, the weakened 

generalized axiom of revealed preference (GARP) developed by Varian (1982) to allow for multi-valued 

indifference curves is also a necessary and sufficient condition.  In a forced-choice scenario which CEs almost 

invariably assume (no intra-choice indication of “indifference”), GARP and SARP violations become identical.   

 

Attribute Non-Attendance 

Respondents have also long been noted to not “attend” to, or not pay attention to, all attributes in a CE 

(Hensher 2006; Hensher, Rose, and Greene 2005).  Non-attendance, particularly of the price attribute, is linked to 

significantly inflated WTP estimates and is thus an important consideration for any CE researcher (Hensher, Rose, 

and Greene 2012; Scarpa et al. 2009).  Some identification of ANA has taken the form of stated non-attendance 

(SA), or explicit supplementary questions inquiring about the importance of attributes to a specific respondent, 

although the empirical validity of this approach has been challenged (Hensher and Rose 2009; Hess and Hensher 

2010).  Instead, inferred non-attendance (IA), or use of model inference to identify and potentially treat ANA, has 

been proposed through fixed latent class methods (Hensher and Greene 2010; Hole 2010; Scarpa et al. 2009;) and 

stochastic attribute selection through Bayesian estimation (Scarpa et al. 2009).  This article focuses on ANA 

specification through fixed latent classes or the equality constrained latent class (ECLC) model, designing all 

possible linear utility functions that could be followed by respondents, given the limited product attributes 

provided in the CE.  This strategy creates, for a certain number of attributes K, a 2𝐾 rule for possible linear utility 

functions in which respondents attend all, some, or none of the product attributes.  Some utility functions may be 

theoretically sound, such as ignoring a qualitative component of a product, while behaviors such as price ANA 

challenge basic fundamentals of economic theory and greatly inhibit proper WTP estimation (Lancsar and Louviere 

2006). 

Several factors may drive respondents’ processing strategies that probabilistically sort them into latent 

classes indicating ANA of single, multiple, or all CE attributes. In general, ANA has been credited to several drivers, 

including response to the hypothetical nature of CEs (particularly for the price attribute) (Scarpa et al. 2009), 

cognitively simplifying choice sets (Alemu et al. 2013), and researchers’ poor specification of attribute ranges 

which fail to induce compensatory behavior (Hensher, Rose, and Greene 2012).  As many CE experiments are 

administered online and provide compensation for completion, another factor may also be inducing perverse 

behavior among survey participants—inattention (i.e., simply not caring about the research or survey design and 

only attempting to collect the incentive offer).  It is this aspect which we investigate in depth in this work. 

 

Experimental Design 

Our survey was designed to include low-probability screening questions, TQs, invisible speed metrics for 

individual survey segments, and an age validation strategy along with a choice experiment.  Four versions of this 



House et al. 

5 

survey were tested to focus on the effect of placement and frequency of TQ inclusion.  The placement of interest 

was at the beginning of the survey and just before the choice experiment.  Other than which answer to select, both 

the beginning and end TQ were identical.  The intent was to be as courteous to the respondent as possible while 

hinting at an explanation for the question’s inclusion.  The TQ read: “Please select ‘disagree’ for this line.  Thank 

you for reading carefully.”   

Therefore, 1,880 respondents were randomly allocated to the following four versions, with versions 

weighted based on past TQ research to ensure sufficient failures for analysis: 

1. Control (n=429): No TQ 

2. Beginning TQ Only (n=474): Placement of one TQ in the first line of a question grid in the beginning of the 

survey (after median 0.87 minutes) 

3. End TQ Only (n=451): Placement of one TQ in the last line of a question grid just before the choice 

experiment (after median 6.38 minutes) 

4. Beginning and End TQs (n=526): Placement of two TQs, with one in the first line of a question grid in the 

beginning of the survey (after median 0.84 minutes) and the other in the last line of a question grid just 

before the choice experiment (after median 6.39 minutes) 

For the purposes of analysis, these versions are pooled to achieve adequate sample size to separately analyze 

participants who fail any of the poor behavior indicators.  All versions have identical complimenting low-probability 

screening questions, age verifications, and (invisible) speeding metrics.  The low-probability screener regarded 

fresh berry purchases in the past year.  In addition to common options such as fresh blueberries, fresh 

strawberries and fresh raspberries, improbable options were fresh goji berries, fresh red currants, and fresh 

muscadine grapes.  Potentially fraudulent applicants were flagged only if they chose at least two of three of these 

options.  Due to extremely sparse and geographically diverse growing locations, it is highly unlikely that an 

individual actually did consume multiple (fresh) low-probability options.  In another verification method, 

respondents were initially asked to enter their age in the screening section and then asked to select their birth 

year in the ending demographics section.  Inattentive respondents were flagged if the birth year deviated by at 

least two years from reported age.  Finally, if respondents answered the CE at an average rate of ≤ 4 seconds per 

question then inattention was also flagged.   

Each survey version contained a choice experiment to elicit preferences for fresh blueberries.  The 

blueberry products contained a simple design of three attributes: production method (organic vs. conventional), 

production locale (“local” vs. “U.S.”), and four levels for price, summarized in table 1.  The price spread chosen 

mirrors blueberry price variance in the United States for the Aug/Sept 2013 survey period (USDA 2013). 
Table 1. Choice Experiment Attributes 

Choice Experiment Attributes 

Attributes  Levels 

Production Method  Organic, Conventional 
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Production Location 
 “Local” (within state of residence),                    

“U.S.” (outside of state of residence) 

Price (USD/pint)  $1.49, $2.49, $3.49, $4.49 

 

A full factorial design results in (2𝑥2𝑥4)2 = 256 choice combinations.  The OPTEX procedure in SAS 

provided a D-optimal fractional factorial design of 13 randomly-ordered choices for respondents to make the 

choice task more reasonable. Figure 1 illustrates the choice presentation in the online survey.  To avoid possible 

confusion that higher priced goods represent higher quality goods, we include in the CE instructions to “Please 

assume the only characteristics that differ are those which are explicitly mentioned”.  We also include a “cheap 

talk” script to attempt to diminish hypothetical bias and encourage participants to select as they would in a 

purchasing scenario (Lusk 2003).  Importantly, the “I would choose neither” option is not offered in this CE design, 

as this discourages satisficing by avoiding difficult decisions (Carson el al. 1994) and, importantly, avoids potentially 

debilitating specification problems when evaluating preference axiom violations (Hougaard, Tjur, and Østerdal 

2012).  This follows other CE work specifically investigating data quality (McIntosh and Ryan 2002).  Respondents 

screened for the survey are primary shoppers who have purchased blueberries in the last year, so removal of the 

“neither” option is assumed to not have a measureable negative effect on respondent attitudes.3

 

   

 
Figure 1. Survey Choice Example 

 

Model Specification 

Equality Constrained Latent Class Model 

Following Hensher, Rose, and Greene (2012), fixed latent classes allow respondents to sort, based on their 

consideration of attributes in the choice process, into one of 2𝐾 classes (or classes q, when 𝑞 = 1, … ,𝑄).  This 

builds on the standard MNL model by probabilistically sorting respondents, following the form: 

𝑃𝑟𝑜𝑏(𝑖, 𝑗|𝑞) =
exp (𝛽𝑞′𝑥𝑖,𝑗)

∑ exp (𝛽𝑞′𝑥𝑖,𝑗)𝐽
𝑗=1

       (1) 

The class vector q has been described as a masking vector of form (𝛿1,𝛿2,𝛿3, … ), where each 𝛿 may take the 

values 0,1.  Therefore the 𝛽𝑞 vector becomes the interaction (product) of the coefficient 𝛽 with the masking 
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vector.  In this context of blueberry attribute selection, we have three attributes that expand to 23 = 8 classes, 

fixing utility functions as follows in table 2: 

 

Table 2. Fixed Latent Classes and Corresponding Utility Functions 

Latent Class  Linear Utility Functions 

1. Full Attendance  𝑈(𝐵𝑙𝑢𝑒𝑏𝑒𝑟𝑟𝑖𝑒𝑠) = 𝛽1𝑝𝑟𝑖𝑐𝑒 + 𝛽2𝑜𝑟𝑔𝑎𝑛𝑖𝑐 + 𝛽3𝑙𝑜𝑐𝑎𝑙 + 𝜀 

2. Full Non-Attendance  𝑈(𝐵𝑙𝑢𝑒𝑏𝑒𝑟𝑟𝑖𝑒𝑠) =    𝜀 

3. Attend Local Only  𝑈(𝐵𝑙𝑢𝑒𝑏𝑒𝑟𝑟𝑖𝑒𝑠) =   𝛽3𝑙𝑜𝑐𝑎𝑙 + 𝜀 

4. Attend Org. Only  𝑈(𝐵𝑙𝑢𝑒𝑏𝑒𝑟𝑟𝑖𝑒𝑠) =  𝛽2𝑜𝑟𝑔𝑎𝑛𝑖𝑐 +  𝜀 

5. Attend Price Only  𝑈(𝐵𝑙𝑢𝑒𝑏𝑒𝑟𝑟𝑖𝑒𝑠) = 𝛽1𝑝𝑟𝑖𝑐𝑒 +   𝜀 

6. Ignore Local Only  𝑈(𝐵𝑙𝑢𝑒𝑏𝑒𝑟𝑟𝑖𝑒𝑠) = 𝛽1𝑝𝑟𝑖𝑐𝑒 + 𝛽2𝑜𝑟𝑔𝑎𝑛𝑖𝑐 +  𝜀 

7. Ignore Org. Only  𝑈(𝐵𝑙𝑢𝑒𝑏𝑒𝑟𝑟𝑖𝑒𝑠) = 𝛽1𝑝𝑟𝑖𝑐𝑒 +  𝛽3𝑙𝑜𝑐𝑎𝑙 + 𝜀 

8. Ignore Price Only  𝑈(𝐵𝑙𝑢𝑒𝑏𝑒𝑟𝑟𝑖𝑒𝑠) =  𝛽2𝑜𝑟𝑔𝑎𝑛𝑖𝑐 + 𝛽3𝑙𝑜𝑐𝑎𝑙 + 𝜀 

 

Full Attribute Attendance (AA) describes a respondent who is most likely to sort into a utility function in 

which the 𝛽′𝑠 for every CE attribute are non-zero.  Other classes involved single, dual, or complete ANA which may 

provide insight into the respondents’ processing strategies.  Since we make no presumption that “rational” 

respondents should choose any particular qualitative attribute (Lancsar and Louviere 2006), in the case of 

“organic” or “local” ANA we assume that respondents simply do not care about these attributes.  Therefore, the 

fixed classes “Ignore Local Only”, “Ignore Organic Only”, and “Attend Price Only” are all perfectly amenable to 

economic theory.   

The remaining latent classes, however, deviate from economic theory since respondents ignore the price 

attribute (at a minimum).  This includes “Attend Organic Only”, “Attend Local Only”, “Ignore Price Only”, and “Full 

Attribute Non-Attendance” (Full ANA).  A respondent who sorts into the Full ANA category does not have any 

discernibly non-zero 𝛽′𝑠 for any CE attributes.  This is arguably the least useful class of respondents, as no 

statistical information may be derived from their CE responses to determine their preferences.   

Scaled Mixed Logit Model 

The scaled mixed logit model is an approach arising from random parameter estimations in WTP space which 

account for both scale and preference heterogeneity (Greene and Hensher 2010).  Following Greene and Hensher 

(2010), the traditional mixed multinomial logit model is represented by 

𝑃𝑟𝑜𝑏(𝑐ℎ𝑜𝑖𝑐𝑒𝑖𝑡 = 𝑗|𝑥𝑖𝑡 , 𝑧𝑖 ,𝑣𝑖) =  
exp (𝑉𝑖𝑡,𝑗)

∑ exp (𝑉𝑖𝑡,𝑗)
𝐽𝑖𝑡
𝑗=1

    (2) 

where 

𝑉𝑖𝑡 = 𝛽𝑖′𝐱𝑖𝑡,𝑗 
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𝛽𝑖 = 𝛽 + ∆𝐳𝑖 + 𝛤𝐯𝑖 

𝐱𝑖𝑡,𝑗 = the set K of attributes composing alternative j in choice situation t observed by individual i 

𝐳𝑖 = the set of M characteristics of individual i which influence the mean of the taste parameters 

𝐯𝑖 = the vector of K random variables with mean=0 and known variances and zero covariances 

 

Attempts to account for scale heterogeneity as well as individual preference heterogeneity have led to expansions 

on the 𝛽𝑖’s to estimate additional parameters in the generalized mixed logit model, represented by 

𝛽𝑖 = 𝜎𝑖[𝛽 + ∆𝐳𝑖] + [𝛾 + 𝜎𝑖(1 − 𝛾)]𝛤𝐯𝑖     (3) 

where 

𝜎𝑖 = exp (𝜎� + 𝛿′𝐡𝑖 + 𝜏𝑤𝑖) 

𝜎𝑖 = the standard deviation of the individual-specific error term 

𝐡𝑖 = the set of L characteristics of individual i which may overlap with 𝐳𝑖  

𝛿 = parameters in the observed part of the heterogeneity in the scale term 

𝑤𝑖 = unobserved heterogeneity, the distribution of which is assumed to be standard normal 

𝜎� = mean parameter in the variance 

𝛾 = weighting parameter indicating the level of variance in the residual preference heterogeneity which varies 

with scale, which must be estimated between 0 and 1 

𝜏 = the coefficient of the unobserved scale heterogeneity 

 

We then specify the model in WTP space, following work which indicates the superiority of directly 

obtaining estimates in this manner (Balcombe, Chalak, and Fraser 2009; Scarpa, Thiene, and Train 2008;). 

Following the optimal design found by Balcombe, Chalak, and Fraser, who independently tested twenty models 

with fixed and random coefficients in preference and WTP space, we evaluated price in a random log-normal 

distribution and qualitative attributes in a normal distribution.  By estimating in WTP space, the weighting 

parameter 𝛾 is fixed at zero and the 𝛽 for price is normalized at unity.  This 𝛾 = 0 specification collapses to the 

SMXLM (scaled mixed logit model), with 

𝛽𝑖 =  𝜎𝑖[𝛽 + ∆𝐳𝑖 + 𝛤𝐯𝑖]        (4) 

Greene and Hensher (2010) show that without explicitly accounting for observed heterogeneity 𝛿′𝐡𝑖, 𝐸[𝜎𝑖] =

exp (𝜎� + 𝜏2/2).  The coefficient 𝜏 thus becomes the major driver of the standard deviation of the individual-

specific error term and can help researchers determine the level of unobserved heterogeneity within a dataset.  

We operationalize this concept to analyze the intensity of the variance between passing respondents and those 

poor respondents who would have been quarantined by real time filters in the survey. 
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Results 

Significantly higher frequencies of respondents flagged as “fraudulent” or “inattentive” are concentrated 

in certain fixed latent classes (table 3).  Results indicate that 29.0% of the Full ANA class and 18.9% of the Attend 

Organic Only class were flagged as potentially fraudulent.  These two classes alone account for over half of the 

fraudulent respondents in the survey.  Inversely, the Full AA and Ignore Organic Only classes have significantly 

lower rates of fraudulence.  Engagement metrics, specifically TQ failure and CE speeding, also indicate that Full 

ANA and Attend Organic Only classes contain significantly higher rates of inattentive respondents.  The speeding 

metric is particularly worrisome, as little to no cognitive processing would occur during the CE with an average 

time of ≤ 4 seconds per question.   

 

Table 3. Probabilistic Fixed Class Assignment vs. Quarantining Metrics 

Fixed Latent Class 

(highest 

probability 

exported from 

Nlogit) 

N 
Class 

%* 

Fraud  Inattention 

Any of the 

four filters 

(%) 

≥2 of 3 

Low Prob. 

Q’s (%) 

 
Missing       

≥1 TQ if 

shown (%) 

Age Not 

Consistent 

(%) 

Speed CE      

≤4 sec. per 

Q. (%) 

1. Full AA 904 48.1 3.4  2.9 1.3 1.2 7.9 

2. Full ANA 262 13.9 29.0  27.9 6.1 20.6 48.5 

         

3. Attend Local 

Only 
53 2.8 9.4 

 
4.4 3.8 0.0 13.2 

4. Attend Org. 

Only 
53 2.8 18.9 

 
15.9 9.4 7.5 39.6 

         

5. Attend Price 

Only 
51 2.7 11.8 

 
9.5 2.0 3.9 17.6 

6. Ignore Local 

Only 
0 - - 

 
- - - - 

         

7. Ignore Price 

Only 
240 12.8 11.3 

 
5.9 2.1 2.5 17.9 

8. Ignore Org. 

Only 
317 16.7 3.8 

 
3.1 0.0 0.9 6.6 
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Total 1,880 100.0 8.9  7.3 2.2 4.3 15.9 

Note: Full ANA (65.0%), Attend Local Only (4.6%), Attend Organic Only (5.3%), and Ignore Price Only (8.7%) jointly 
encompass 83.6% of all individuals violating SARP.   
Note: Full ANA (77.2%), Attend Local Only (6.2%), Attend Organic Only (6.7%), and Ignore Price Only (4.1%) jointly 
encompass 94.2% of all individuals violating SARP more than once.   
*Class percentages will not perfectly align with output sample average probabilistic distributions since the highest 
class probability was designated to place each individual in a unique class. 

 

The ANA composition shift in the ECLC fixed class assignments when quarantining metrics filter poor 

online panel respondents is shown in table 4.  With the simplified CE design, it is possible to run this analysis 

separately for the total sample, “offending” (potentially quarantined) respondents, and passing respondents who 

were not identified as fraudulent or inattentive.  Two scenarios are run, with the first being the full set of 8 

possible linear utility functions.  The second scenario controls only for utility functions not amenable to economic 

theory, namely Full ANA, non-attendance of the price attribute, and dual non-attendance of price and organic or 

price and local attributes (Scarpa et al. 2009).  

There are significant improvements in both models’ goodness-of-fit metrics after filtering (comparing the 

group of passing respondents who were not identified as fraudulent or inattentive with the total sample), with 

gains in adjusted 𝑅2 and the scale-adjusted AIC.  Offending respondents are five times more likely to fall into the 

Full ANA class, with over 40% of individuals probabilistically assigned in both scenarios.  After filtering, full 

attendance increases by 8.4% and 10.6% and Full ANA decreases by 38.5% and 40.6% in the 8-class and 5-class 

scenarios, respectively.  Interestingly, a disproportionately larger number of respondents failing quarantining 

metrics also seem to sort into the class which only attends to the organic attribute, and (in the 8-class scenario) a 

disproportionately smaller number sort into the class only ignoring the organic attribute.  With an elevated level of 

inattentive and “speeding” respondents in the class only attending the organic attribute, this may reflect a quick 

processing strategy when seeing the organic attribute in the choice set. Additionally, offending respondents 

selecting randomly are less likely to have answer patterns resulting in insignificance of only one rather than two 

attribute 𝛽s, possibly explaining the lower incidence of ignoring price or organic only.  Overall, the ANA sum-totals 

drop substantially after filtering, primarily driven by declining rates of Full ANA. 

Changes in WTP before and after filtering are, by contrast, unremarkable with the ECLC model.  Full 

sample organic and local WTP estimates are within 1% of the filtered subset.  The intra-scenario proximity of WTP 

estimates is most likely due to the ECLC model’s ability to cope with non-attendance resulting from poor 

respondent behavior, since censored latent classes are more likely to contain offending respondents.  However, 

simply comparing offenders to non-offenders, the more theoretically sound 5-class model produces organic WTP 

estimates which are 23.6% higher for offenders.  The organic WTP estimate is likely higher for offending 

respondents in the 8-class model after removing offenders since there are fewer offending respondents in the 

Ignore Price Only class.  It is important to note that the significantly higher WTP estimates in the 8-class scenario 
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are due to the fact that non-attendance of any attribute is censored, while the 5-class model permits non-

attendance of qualitative attributes but not price.  

 

Table 4. Latent Class Probability for Attribute Attendance (AA) and Attribute Non-Attendance (ANA) 

Fixed Latent 

Classes 

8 Latent Classes: Composition % 

(Full Linear Utility Function Possibilities) 

 5 Latent Classes: Composition % 

(Only Un-sound Classes Out) 

Total 

Sample  

Without 

Offenders 
Offenders 

 Total 

Sample 

Without 

Offenders 
Offenders 

1. Full AA 38.1%* 41.3%* 18.5%*  62.2%* 68.8%* 28.3%* 

2. Full ANA 14.3%* 8.5%* 42.6%*  13.0%* 8.0%* 41.0%* 

3. Attend Local 

Only 
3.6%* 4.0%* 2.1%* 

 
4.4%* 4.9%* 2.5%* 

4. Attend Org. 

Only 
4.2%* 2.9%* 13.0%* 

 
5.8%* 3.5%* 15.6%* 

5. Attend Price 

Only 
6.1%* 6.2%* 5.5%* 

 
- - - 

6. Ignore Local 

Only¹ 
0.0% 0.0% 2.2% 

 
- - - 

7. Ignore Org. 

Only 
22.1%* 25.5%* 10.6%* 

 
- - - 

8. Ignore Price 

Only 
11.5%* 11.6%* 5.6%* 

 
14.6%* 14.9%* 12.6%* 

L-L -8,726.7 -6,513.2 -2,079.4  -9,199.9 -6,970.0 -2,107.9 

Adjusted 𝑹𝟐 0.4847 0.5428 0.2282  0.4568 0.5107 0.2176 

AIC/N 0.715 0.635 1.075  0.753 0.679 1.088 

Observations 24,440 20,553 3,887  24,440 20,553 3,887 

Sum-Total ANA Rates 

Price 33.6% 27.1% 63.3%  37.8% 31.3% 71.7% 

Organic 46.1% 44.2% 60.8%  17.4% 12.9% 43.5% 

Local 24.6% 17.7% 63.3%  18.8% 11.5% 56.6% 

Willingness-To-Pay Estimates² 

WTP Organic  $1.93/pint $1.96/pint $1.83/pint  $1.12/pint $1.10/pint $1.36/pint 
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(vs. conventional) 

[95% CI] 

[$1.78-

$2.08] 

[$1.81-$2.12] [$1.31-$2.35] [$0.99-

$1.24] 

[$0.97-$1.23] [$0.86-$1.86] 

WTP Local 

(vs. non-state U.S.) 

[95% CI] 

$1.29/pint 

[$1.17-

$1.41] 

$1.29/pint 

[$1.18-$1.41] 

$1.32/pint 

[$0.86-$1.78] 

 $1.07/pint 

[$0.95-

$1.18] 

$1.07/pint 

[$0.95-$1.18] 

$1.07/pint 

[$0.63-$1.50] 

Note: * denotes statistically significant classes (all at 99% confidence interval).   
¹Class 6 “Ignore Local Only” never significant and contained no individuals when exporting individual probabilistic 
class assignment. 
²Confidence intervals constructed using the delta method (Hole 2007). 
 

The SMXLM provides a different lens for analysis, with improvements in estimation exceeding that with 

the ECLC approach.  Results are outlined in Table 5. Filtering respondents improves goodness-of-fit through both 

increased adjusted R^2 (0.468 to 0.531) and decreased scale-adjusted AIC (0.738 to 0.650).  Importantly, the 𝜏-

variance parameter driving the individual specific standard deviation of the individual’s error term (𝜎𝑖) is 

significantly higher in the offending population vis-à-vis passing respondents, at 1.901 and 1.102, respectively.  The 

moderate decline in the overall 𝜏 estimate after filtering indicates a decrease in the identifiable and controllable 

poor respondent behavior can decrease resulting (and unnecessary) systemic heterogeneity. 

Filtering poor respondents also drives a decline in the directly estimated WTP coefficients for both organic 

and local blueberry attributes.  The disparity between offending and non-offending respondents is much more 

pronounced than with the previous ECLC model, as ANA censoring controls are not implemented with the scaled 

mixed logit model.  The organic WTP estimate for offending respondents is nearly double that for passing 

respondents, with the filtering process decreasing organic WTP estimates by 12.3%.  Local WTP is 18.4% higher for 

offending respondents vs. non-offending respondents, and filtering reduces overall local WTP estimates by 7.4%.  

With the popularity of mixed logit models and online research through web panels, this study suggests that the 

implications of unengaged and satisficing respondents has a measureable and significant impact on estimation 

results.  The extent to which these poor respondents penetrate the study sample will naturally be proportional to 

the extent of this population’s bias on overall estimated coefficients. 

 

Table 5. Scaled Mixed Logit Model (SMXLM) Comparison 
Coeff. in WTP Space, 

USD/pint 

 
Total Sample 

Removing Offending 

Respondents 

“Offending” 

Respondents 

Organic  

[vs. conventional] 

(st. err.) 

 
2.335*** 

(0.062) 

2.047*** 

(0.054) 

3.959*** 

(0.208) 

95% CI 
 [2.296 – 

2.374] 
[2.013 – 2.081] [3.877 – 4.041] 
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Local  

[vs. non-state U.S.] 

(st. err.) 

 
1.425*** 

(0.028) 

1.319*** 

(0.022) 

1.562*** 

(0.099) 

95% CI 
 [1.418 – 

1.432] 
[1.313 – 1.325] [1.558 – 1.566] 

Standard  

Deviations 

 
   

Organic 

(st. err.) 

 3.080*** 

(0.047) 

2.422*** 

(0.037) 

2.569*** 

(0.202) 

Local 

(st. err.) 

 0.515*** 

(0.040) 

0.422*** 

(0.033) 

0.126 

(0.184) 

τ-Variance  

Parameter 

(st. err.) 

 
1.131*** 

(0.016) 

1.102*** 

(0.014) 

1.901*** 

(0.071) 

𝝈� 

(st. dev.) 

 0.977 

(1.391) 

0.974 

(1.318) 

0.824 

(2.260) 

L-L  -9,009.31 -6,676.48 -2,124.92 

Adj. 𝑹𝟐  0.468 0.531 0.210 

AIC/n  0.738 0.650 1.096 

Observations (n)  24,440 20,553 3,887 

Note: *** and ** indicate significance at the 99% and 95% confidence level.  Standard errors are in parentheses, 
except for 𝝈� which displays the standard deviation.  𝛾-parameter estimation is fixed in the WTP space 
specification.  WTP coefficients are negative in program output, but converted to intuitive positive values. 
 

Conclusions and Recommendations 

Poor respondents who fraudulently enter surveys and/or have little to no engagement are present in 

many online panel samples and may introduce significant unnecessary variance into model estimation and bias 

WTP estimates.  These damaging respondents are identifiable through real-time quarantining methods such as 

trap questions, low-probability screening questions, speeding metrics, and age verification strategies.  This article 

illustrates that offenders are much more likely to be present in fixed latent classes, estimated through the ECLC 

approach, that correspond to utility functions which are contrary to economy theory and indicate no significant 𝛽 

estimates for CE attributes.  Removing these unengaged respondents significantly decreases attribute non-

attendance, especially full non-attendance, and improves goodness-of-fit metrics in all CE models investigated.   

Similarly, potentially quarantined respondents exhibit considerably higher scale heterogeneity, as 

measured through the 𝜏-variance parameter in the SMXLM, than those passing quarantining metrics.  The 
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expected value of the individual-specific standard deviation of the individual’s error term is thus reduced after 

filtering quarantined respondents.  Therefore, this study demonstrates that a moderate part of this systemic 

heterogeneity can be avoided simply through more vigilant sample management techniques.  Furthermore, 

filtering poor respondents reduced WTP estimates by 12.3% and 7.4% for organic and local attributes, respectively, 

in the SMXLM.  As designing the most robust models to estimate attribute WTPs is a goal of upmost importance for 

CE researchers, the findings from this study indicate that the outlined procedures may contribute to more 

conservative estimates.  And while this WTP study utilizes a CE model as an example, sample data quality is likely 

measurably improved for most econometric approaches when inattentive and fraudulent respondents are 

properly quarantined. 
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FOOTNOTES / ENDNOTES 

 

                                                            
1  For recent examples, please see Abidoye et al. 2011; Gao and Schroeder, 2008; Gao, Schroeder, and 

Yu 2010; Hartl and Herrmann 2009;  Loose, Peschel, and Grebitus 2013; Loose and Remaud 2013; Moon, 

Balasubramanian, and Rimal 2011; Olynk, Tonsor, and Wolf, 2010;  Schaafsma, Brouwer, and Rose 2012; 

Tonsor 2011; Uzea, Hobbs, and Zhang 2011; van Doorn and Verhoef 2011; Wolf, Tonsor, and Olynk 

2011; .   

2 Lancsar and Louviere (2006) discuss and criticize preference-based approaches such as monotonicity, 

local non-satiation, convexity, and continuity. 

3 Previous research on blueberry consumption using a choice experiment showed only 6% of 

respondents selecting “none”, and most selected “none” when presented a choice between two 

“imported” production locations.  The “imported” location was thus intentionally excluded from this 

design to simplify the experiment and encourage participation. 


